Pulsed laser deposition of yttria stabilized zirconia based heterostructure

被引:9
|
作者
Pascu, R. [1 ]
Somacescu, S. [2 ]
Epurescu, G. [1 ]
Filipescu, M. [1 ]
Luculescu, C. [1 ]
Colceag, D. [1 ]
Osiceanu, P. [2 ]
Birjega, R. [1 ]
Mitu, B. [1 ]
机构
[1] Natl Inst Laser Plasma & Radiat Phys, Bucharest 077125, Romania
[2] Romanian Acad, Inst Phys Chem, Bucharest 060021, Romania
关键词
Solid oxide fuel cells; NiYSZ/YSZ anode-electrolyte; Heterostructure; Pulsed laser deposition; ANODE; NI; ELECTROLYTE;
D O I
10.1016/j.tsf.2013.11.130
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Yttria stabilized zirconia (YSZ), nickel-doped yttria stabilized zirconia (NiYSZ) thin films and NiYSZ/YSZ anode-electrolyte heterostructure have been synthesized on Si(100) substrate by pulsed laser deposition technique. Atomic Force Microscopy, Scanning Electron Microscopy, and Variable Angle Spectroscopic Ellipsometry studies have been applied to determine the surface topography, film morphology and thickness. The X-ray diffraction measurements evidenced a highly textured growth along (111) direction for NiYSZ/YSZ heterostructure with crystallite dimension of 18 nm. The X-ray photoelectron spectroscopy analysis showed a displacement of Ni oxidation states along the depth profile, with Ni3+ oxidation state on the surface, a very thin layer containing Ni2+ associated to NiO buried under the surface, while metallic Ni is predominant in the bulk. The presence of an intermix layer at the interface between the NiYSZ and YSZ, suggested by the ellipsometric measurements, was confirmed by Secondary Neutral Mass Spectrometry data. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:98 / 103
页数:6
相关论文
共 50 条
  • [41] Chemical vapor deposition of electrolyte thin films based on yttria-stabilized zirconia
    N. V. Gelfond
    O. F. Bobrenok
    M. R. Predtechensky
    N. B. Morozova
    K. V. Zherikova
    I. K. Igumenov
    Inorganic Materials, 2009, 45 : 659 - 665
  • [42] Chemical vapor deposition of electrolyte thin films based on yttria-stabilized zirconia
    Gelfond, N. V.
    Bobrenok, O. F.
    Predtechensky, M. R.
    Morozova, N. B.
    Zherikova, K. V.
    Igumenov, I. K.
    INORGANIC MATERIALS, 2009, 45 (06) : 659 - 665
  • [43] Nanosecond laser ablation for pulsed laser deposition of yttria
    Sinha, Sucharita
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 112 (04): : 855 - 862
  • [44] Nanosecond laser ablation for pulsed laser deposition of yttria
    Sucharita Sinha
    Applied Physics A, 2013, 112 : 855 - 862
  • [45] Effect of dopant concentration on femtosecond pulsed laser irradiation of yttria-stabilized zirconia for generating nanopores
    Yamamuro, Yuka
    Shimoyama, Tomotaka
    Nagata, Hiroya
    Yan, Jiwang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 980
  • [46] PULSED LASER SEALING OF PLASMA-SPRAYED LAYERS OF 8 WT PERCENT YTTRIA STABILIZED ZIRCONIA
    JASIM, KM
    RAWLINGS, RD
    WEST, DRF
    JOURNAL OF MATERIALS SCIENCE, 1992, 27 (14) : 3903 - 3910
  • [47] Low-temperature degradation of yttria-stabilized zirconia treated with pulsed laser and annealing techniques
    Harai, Tomohiro
    Mizutani, Masayoshi
    Shishido, Shunichi
    Nakamura, Keisuke
    Ohmori, Hitoshi
    Konno, Toyohiko J.
    Kuriyagawa, Tsunemoto
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2023, 80 : 45 - 56
  • [48] Fabrication of functionally-graded yttria-stabilized zirconia coatings by 355 nm picosecond dual-beam pulsed laser deposition
    Deng, Chun
    Kim, Hyeongwon
    Ki, Hyungson
    COMPOSITES PART B-ENGINEERING, 2019, 160 : 498 - 504
  • [49] Regulation of hydrophobicity on yttria stabilized zirconia surface by femtosecond laser
    Sun, Xiaomao
    Wang, Kedian
    Fan, Zhengjie
    Wang, Rujia
    Mei, Xuesong
    Lu, Yang
    CERAMICS INTERNATIONAL, 2021, 47 (07) : 9264 - 9272
  • [50] EFFECTS OF LASER PROCESSING ON NICKEL OXIDE - YTTRIA STABILIZED ZIRCONIA
    Kenneth, Tan Hong Yi
    Su Pei-Chen
    Sun Chen-Nan
    Wei Jun
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 367 - 373