GenomicInteractions: An R/Bioconductor package for manipulating and investigating chromatin interaction data

被引:34
|
作者
Harmston, Nathan [1 ,2 ]
Ing-Simmons, Elizabeth [1 ]
Perry, Malcolm [1 ]
Baresic, Anja [1 ]
Lenhard, Boris [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Fac Med, MRC Clin Sci Ctr, Computat Regulatory Genom, London W12 0NN, England
[2] Duke NUS Grad Med Sch, Program Cardiovasc & Metab Dis, Singapore 169857, Singapore
来源
BMC GENOMICS | 2015年 / 16卷
基金
英国医学研究理事会;
关键词
CHROMOSOME CONFORMATION CAPTURE; RANGE GENOMIC INTERACTIONS; HI-C; GENE-EXPRESSION; HIGH-RESOLUTION; RECEPTOR NR4A2; ORGANIZATION; TRANSCRIPTION; LEUKEMIA; MAP;
D O I
10.1186/s12864-015-2140-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Precise quantitative and spatiotemporal control of gene expression is necessary to ensure proper cellular differentiation and the maintenance of homeostasis. The relationship between gene expression and the spatial organisation of chromatin is highly complex, interdependent and not completely understood. The development of experimental techniques to interrogate both the higher-order structure of chromatin and the interactions between regulatory elements has recently lead to important insights on how gene expression is controlled. The ability to gain these and future insights is critically dependent on computational tools for the analysis and visualisation of data produced by these techniques. Results and conclusion: We have developed GenomicInteractions, a freely available R/Bioconductor package designed for processing, analysis and visualisation of data generated from various types of chromosome conformation capture experiments. The package allows the easy annotation and summarisation of large genome-wide datasets at both the level of individual interactions and sets of genomic features, and provides several different methods for interrogating and visualising this type of data. We demonstrate this package's utility by showing example analyses performed on interaction datasets generated using Hi-C and ChIA-PET.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data
    Marini, Federico
    Ludt, Annekathrin
    Linke, Jan
    Strauch, Konstantin
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [22] NanoMethViz: An R/Bioconductor package for visualizing long-read methylation data
    Su, Shian
    Gouil, Quentin
    Blewitt, Marnie E.
    Cook, Dianne
    Hickey, Peter F.
    Ritchie, Matthew E.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (10)
  • [23] miRspongeR: an R/Bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules
    Zhang, Junpeng
    Liu, Lin
    Xu, Taosheng
    Xie, Yong
    Zhao, Chunwen
    Li, Jiuyong
    Thuc Duy Le
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [24] miRspongeR: an R/Bioconductor package for the identification and analysis of miRNA sponge interaction networks and modules
    Junpeng Zhang
    Lin Liu
    Taosheng Xu
    Yong Xie
    Chunwen Zhao
    Jiuyong Li
    Thuc Duy Le
    BMC Bioinformatics, 20
  • [25] Transcriptogramer: an R/Bioconductor package for transcriptional analysis based on protein-protein interaction
    Morais, Diego A. A.
    Almeida, Rita M. C.
    Dalmolin, Rodrigo J. S.
    BIOINFORMATICS, 2019, 35 (16) : 2875 - 2876
  • [26] RImmPort: an R/Bioconductor package that enables ready-for-analysis immunology research data
    Shankar, Ravi D.
    Bhattacharya, Sanchita
    Jujjavarapu, Chethan
    Andorf, Sandra
    Wiser, Jeffery A.
    Butte, Atul J.
    BIOINFORMATICS, 2017, 33 (07) : 1101 - 1103
  • [27] virtualArray: a R/bioconductor package to merge raw data from different microarray platforms
    Heider, Andreas
    Alt, Ruediger
    BMC BIOINFORMATICS, 2013, 14
  • [28] virtualArray: a R/bioconductor package to merge raw data from different microarray platforms
    Andreas Heider
    Rüdiger Alt
    BMC Bioinformatics, 14
  • [29] cytoviewer: an R/Bioconductor package for interactive visualization and exploration of highly multiplexed imaging data
    Lasse Meyer
    Nils Eling
    Bernd Bodenmiller
    BMC Bioinformatics, 25
  • [30] GSAR: Bioconductor package for Gene Set analysis in R
    Yasir Rahmatallah
    Boris Zybailov
    Frank Emmert-Streib
    Galina Glazko
    BMC Bioinformatics, 18