Large-Scale Selective Sweep among Segregation Distorter Chromosomes in African Populations Drosophila melanogaster

被引:43
|
作者
Presgraves, Daven C. [1 ,2 ]
Gerard, Pierre R. [1 ]
Cherukuri, Anjuli [1 ]
Lyttle, Terrence W. [3 ]
机构
[1] Univ Rochester, Dept Biol, Rochester, NY 14627 USA
[2] Harvard Univ, Radcliffe Inst Adv Study, Cambridge, MA 02138 USA
[3] Univ Hawaii, Dept Cell & Mol Biol, Honolulu, HI 96822 USA
来源
PLOS GENETICS | 2009年 / 5卷 / 05期
关键词
MEIOTIC DRIVE; NATURAL-POPULATIONS; DNA-SEQUENCE; MENDELIAN SEGREGATION; HISTONE TRANSITION; POLYMORPHISM; COMPONENTS; GENETICS; RANGAP; MALES;
D O I
10.1371/journal.pgen.1000463
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD+ males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1-5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (similar to 2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Large-scale recombination rate patterns are conserved among human populations
    Serre, D
    Nadon, R
    Hudson, TJ
    GENOME RESEARCH, 2005, 15 (11) : 1547 - 1552
  • [32] Enhancing Cooperative Coevolution with Selective Multiple Populations for Large-Scale Global Optimization
    Peng, Xingguang
    Wu, Yapei
    COMPLEXITY, 2018,
  • [33] Pattern of Mutation Rates in the Germline of Drosophila melanogaster Males from a Large-Scale Mutation Screening Experiment
    Gao, Jian-Jun
    Pan, Xue-Rong
    Hu, Jing
    Ma, Li
    Wu, Jian-Min
    Shao, Ye-Lin
    Ai, Shi-Meng
    Liu, Shu-Qun
    Barton, Sara A.
    Woodruff, Ronny C.
    Zhang, Ya-Ping
    Fu, Yun-Xin
    G3-GENES GENOMES GENETICS, 2014, 4 (08): : 1503 - 1514
  • [34] Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster:: Large-scale organization and robustness
    Li, D
    Li, JQ
    Ouyang, SG
    Wang, J
    Wu, SF
    Wan, P
    Zhu, YP
    Xu, XJ
    He, FC
    PROTEOMICS, 2006, 6 (02) : 456 - 461
  • [35] Large-Scale Functional Annotation and Expanded Implementations of the P{wHy} Hybrid Transposon in the Drosophila melanogaster Genome
    Myrick, Kyl V.
    Huet, Francois
    Mohr, Stephanie E.
    Alvarez-Garcia, Ines
    Lu, Jeffrey T.
    Smith, Mark A.
    Crosby, Madeline A.
    Gelbart, William M.
    GENETICS, 2009, 182 (03) : 653 - 660
  • [36] Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species
    Chamilos, G
    Lionakis, MS
    Lewis, RE
    Lopez-Ribot, JL
    Saville, SP
    Albert, ND
    Halder, G
    Kontoyiannis, DP
    JOURNAL OF INFECTIOUS DISEASES, 2006, 193 (07): : 1014 - 1022
  • [37] FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations
    dos Santos, Gilberto
    Schroeder, Andrew J.
    Goodman, Joshua L.
    Strelets, Victor B.
    Crosby, Madeline A.
    Thurmond, Jim
    Emmert, David B.
    Gelbart, William M.
    NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D690 - D697
  • [38] Protein interaction networks in Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster.: Large-scale organization and robustness
    Li, Dong
    Li, Jianqi
    Wu, Songfeng
    Wan, Ping
    Chen, Tinggui
    Du, Chunjuan
    Wang, Jian
    Zhu, Yunping
    He, Fuchu
    Xu, Xiaojie
    MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (10) : S78 - S78
  • [39] ANALYSIS OF THE SPECIFICITY OF LARGE-SCALE FRAGMENTATION OF DROSOPHILA-MELANOGASTER GENOMIC DNA IN-VIVO BY TOPOISOMERASE-II
    YAROVAYA, OV
    RAZIN, SV
    HANCOCK, P
    DOKLADY AKADEMII NAUK, 1994, 335 (05) : 653 - 655
  • [40] Large-scale genetic patchiness among NE Atlantic populations of the brittle star Ophiothrix fragilis
    Muths, D.
    Jollivet, D.
    Gentil, F.
    Davoult, D.
    AQUATIC BIOLOGY, 2009, 5 (02): : 117 - 132