Confluent hypergeometric functions and wild ramification

被引:4
|
作者
Terasoma, T
机构
[1] Department of Mathematical Science, University of Tokyo, Tokyo 153, Meguro-ku
关键词
D O I
10.1006/jabr.1996.0309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [41] Expansions of the solutions to the confluent Heun equation in terms of the Kummer confluent hypergeometric functions
    Ishkhanyan, T. A.
    Ishkhanyan, A. M.
    AIP ADVANCES, 2014, 4 (08):
  • [42] PFAFFIAN SYSTEMS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS OF TWO VARIABLES
    Mukai, Shigeo
    KYUSHU JOURNAL OF MATHEMATICS, 2020, 74 (01) : 63 - 104
  • [43] Multiple orthogonal polynomials associated with confluent hypergeometric functions
    Lima, Helder
    Loureiro, Ana
    JOURNAL OF APPROXIMATION THEORY, 2020, 260
  • [44] Polynomial series expansions for confluent and Gaussian hypergeometric functions
    Luh, W
    Müller, J
    Ponnusamy, S
    Vasundhra, P
    MATHEMATICS OF COMPUTATION, 2005, 74 (252) : 1937 - 1952
  • [45] UNIVALENCY AND CONVOLUTION RESULTS ASSOCIATED WITH CONFLUENT HYPERGEOMETRIC FUNCTIONS
    Obradovic, M.
    Ponnusamy, S.
    HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (04): : 1313 - 1328
  • [46] Numerical methods for the computation of the confluent and Gauss hypergeometric functions
    John W. Pearson
    Sheehan Olver
    Mason A. Porter
    Numerical Algorithms, 2017, 74 : 821 - 866
  • [47] Some Fourier transforms involving confluent hypergeometric functions
    Berisha, Nimete Sh.
    Berisha, Faton M.
    Fejzullahu, Bujar Xh.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (5-6) : 316 - 329
  • [48] Recurrence Relations Arising from Confluent Hypergeometric Functions
    Lensari, Abrza
    Rahmani, Mourad
    FILOMAT, 2022, 36 (04) : 1393 - 1402
  • [49] Numerical methods for the computation of the confluent and Gauss hypergeometric functions
    Pearson, John W.
    Olver, Sheehan
    Porter, Mason A.
    NUMERICAL ALGORITHMS, 2017, 74 (03) : 821 - 866
  • [50] Turan Type Inequalities for Tricomi Confluent Hypergeometric Functions
    Baricz, Arpad
    Ismail, Mourad E. H.
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (02) : 195 - 221