Grafting of styrene on to Nafion membranes using supercritical CO2 impregnation for direct methanol fuel cells

被引:35
|
作者
Sauk, J
Byun, J
Kim, H [1 ]
机构
[1] Seoul Natl Univ, Sch Chem Engn, Seoul 151744, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, Seoul 151744, South Korea
关键词
Nafion-grafted-polystyrene sulfonic acid; supercritical carbon dioxide; impregnation; direct methanol fuel cell; ion-exchange capacity; ion conductivity;
D O I
10.1016/j.jpowsour.2004.01.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Grafting of styrene on to Nation membranes is carried out by impregnation and radical polymerization in supercritical carbon dioxide (scCO(2)) as a solvent and swelling agent. Styrene monomer and the initiator 2,2'-azoisobutyronitrile (AIBN) are first impregnated into Nation membranes using scCO(2) at 38degreesC and 25 MPa. After releasing CO2 the polymerization is carried out at 80degreesC and 10 MPa. The Nafion-grafted-polystyrene (N-g-ps) is sulfonated in concentrated sulfuric acid (98% H2SO4). The grafted membranes are characterized by measuring their ion-exchange capacities, ion conductivity and methanol permeation. The morphology and structure of these membranes are observed with Fourier transform infrared spectroscopy and scanning electron microscopy. The Nafion-grafted-polystyrene sulfonic acid (N-g-pssa) exhibits higher ion conductivity and lower methanol permeability than that of Nafion 115. The N-g-pssa membranes are tested as electrolytes in a direct methanol fuel cell. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 63
页数:5
相关论文
共 50 条
  • [31] Noble metal nanowires incorporated Nafion® membranes for reduction of methanol crossover in direct methanol fuel cells
    Liang, Z. X.
    Shi, J. Y.
    Liao, S. J.
    Zeng, J. H.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) : 9182 - 9185
  • [32] Composite Membranes of PVDF Nanofibers Impregnated with Nafion for Increased Fuel Concentrations in Direct Methanol Fuel Cells
    Li, Y.
    Hui, J.
    Kawchuk, J.
    O'Brien, A.
    Jiang, Z.
    Hoorfar, M.
    FUEL CELLS, 2019, 19 (01) : 43 - 50
  • [33] Stretched recast Nafion for direct methanol fuel cells
    Lin, J.
    Wycisk, R.
    Pintauro, P. N.
    Kellner, M.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) : B19 - B22
  • [34] Preparation of PVdF/PSSA composite membranes using supercritical carbon dioxide for direct methanol fuel cells
    Byun, Junyeon
    Sauk, Junho
    Kim, Hwayong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (15) : 6437 - 6442
  • [35] Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells
    Xu, WL
    Lu, TH
    Liu, CP
    Xing, W
    ELECTROCHIMICA ACTA, 2005, 50 (16-17) : 3280 - 3285
  • [36] Meso-Structured Silica-Nafion Hybrid Membranes for Direct Methanol Fuel Cells
    Sahu, A. K.
    Meenakshi, S.
    Bhat, S. D.
    Shahid, A.
    Sridhar, P.
    Pitchumani, S.
    Shukla, A. K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) : F702 - F710
  • [37] Modified Nafion polymer electrolyte membranes by γ-ray irradiation used in direct methanol fuel cells
    Chun-guang Suo
    Wen-bin Zhang
    Hua Wang
    Feng-jie Yang
    Journal of Shanghai Jiaotong University (Science), 2012, 17 (5) : 579 - 585
  • [38] Nafion composite membranes containing rod-shaped polyrotaxanes for direct methanol fuel cells
    Hyun Dong Cho
    Jongok Won
    Heung Yong Ha
    Yong Soo Kang
    Macromolecular Research, 2006, 14 : 214 - 219
  • [39] Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell
    Shao, ZG
    Wang, X
    Hsing, IM
    JOURNAL OF MEMBRANE SCIENCE, 2002, 210 (01) : 147 - 153
  • [40] Performance improvement of passive direct methanol fuel cells with surface-patterned Nafion® membranes
    Pu, Longjuan
    Jiang, Jingjing
    Yuan, Ting
    Chai, Jieshi
    Zhang, Haifeng
    Zou, Zhiqing
    Li, Xue-Mei
    Yang, Hui
    APPLIED SURFACE SCIENCE, 2015, 327 : 205 - 212