Shallow Neural Networks beat Deep Neural Networks trained with transfer learning: A Use Case based on training Neural Networks to identify Covid-19 in chest X-ray images

被引:1
|
作者
Manolakis, Dimitrios [1 ]
Spanos, Georgios [1 ]
Refanidis, Ioannis [1 ]
机构
[1] Univ Macedonia, Dept Appl Informat, Thessaloniki, Greece
来源
25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021) | 2021年
关键词
Deep Learning; Transfer Learning; Convolutional Neural Networks;
D O I
10.1145/3503823.3503834
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Since the start of the covid-19 health crisis, there have been many studies on the application of deep learning models in order to detect the virus on chest X-ray images. Training large neural networks on big data sets is a computationally intensive task, consuming a lot of power and needing a lot of time. Thus, usually only researchers in large institutions or companies have the necessary resources to bring the task to fruition. Other researchers employ transfer learning, a technique that is based on using pre-trained deep neural networks that have been trained on a similar dataset and retrain only their last neuron layers. However, using deep neural networks with transfer learning is not always the best option; in some cases, training a shallow neural network from scratch achieves better results. In this paper we compare training from scratch, shallow neural networks to transfer learning from deep neural models. Our experiments have been conducted on a publicly available dataset containing chest X-ray images concerning covid-19 patients, as well as non-covid-19 ones. Surprisingly enough, training from scratch shallow neural networks produced significantly better results in terms of both specificity and sensitivity. The results of the models' evaluation showed that the three shallow neural networks achieved specificity rates higher than 98%, while having a sensitivity rate of 98%, exceeding the best performing pre-trained model, the DenseNet121, which achieved a specificity rate of 91.3%, while having a sensitivity rate of 98%.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 50 条
  • [21] Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
    Ioannis D. Apostolopoulos
    Tzani A. Mpesiana
    Physical and Engineering Sciences in Medicine, 2020, 43 : 635 - 640
  • [22] Transfer Learning to Detect COVID-19 Automatically from X-Ray Images Using Convolutional Neural Networks
    Taresh, Mundher Mohammed
    Zhu, Ningbo
    Ali, Talal Ahmed Ali
    Hameed, Asaad Shakir
    Mutar, Modhi Lafta
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2021, 2021
  • [24] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Muhab Hariri
    Ercan Avşar
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [25] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Hariri, Muhab
    Avsar, Ercan
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):
  • [27] Synthesizing Chest X-Ray Pathology for Training Deep Convolutional Neural Networks
    Salehinejad, Hojjat
    Colak, Errol
    Dowdell, Tim
    Barfett, Joseph
    Valaee, Shahrokh
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) : 1197 - 1206
  • [28] Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning
    Jain, Rachna
    Nagrath, Preeti
    Kataria, Gaurav
    Kaushik, V. Sirish
    Hemanth, D. Jude
    MEASUREMENT, 2020, 165
  • [29] Detection of Covid-19 based on convolutional neural networks using pre-processed chest X-ray images
    Raj, Arul A. M.
    Sugumar, R.
    Padmkala, S.
    Giri, Jayant
    Ahmad, Naim
    Badawy, Ahmed Said
    AIP ADVANCES, 2024, 14 (03)
  • [30] Deep Convolutional Neural Networks for COVID-19 Detection from Chest X-Ray Images Using ResNetV2
    Rakhymzhan, Tomiris
    Zarrin, Javad
    Maktab-Dar-Oghaz, Mahdi
    Saheer, Lakshmi Babu
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 106 - 116