Shallow Neural Networks beat Deep Neural Networks trained with transfer learning: A Use Case based on training Neural Networks to identify Covid-19 in chest X-ray images

被引:1
|
作者
Manolakis, Dimitrios [1 ]
Spanos, Georgios [1 ]
Refanidis, Ioannis [1 ]
机构
[1] Univ Macedonia, Dept Appl Informat, Thessaloniki, Greece
来源
25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021) | 2021年
关键词
Deep Learning; Transfer Learning; Convolutional Neural Networks;
D O I
10.1145/3503823.3503834
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Since the start of the covid-19 health crisis, there have been many studies on the application of deep learning models in order to detect the virus on chest X-ray images. Training large neural networks on big data sets is a computationally intensive task, consuming a lot of power and needing a lot of time. Thus, usually only researchers in large institutions or companies have the necessary resources to bring the task to fruition. Other researchers employ transfer learning, a technique that is based on using pre-trained deep neural networks that have been trained on a similar dataset and retrain only their last neuron layers. However, using deep neural networks with transfer learning is not always the best option; in some cases, training a shallow neural network from scratch achieves better results. In this paper we compare training from scratch, shallow neural networks to transfer learning from deep neural models. Our experiments have been conducted on a publicly available dataset containing chest X-ray images concerning covid-19 patients, as well as non-covid-19 ones. Surprisingly enough, training from scratch shallow neural networks produced significantly better results in terms of both specificity and sensitivity. The results of the models' evaluation showed that the three shallow neural networks achieved specificity rates higher than 98%, while having a sensitivity rate of 98%, exceeding the best performing pre-trained model, the DenseNet121, which achieved a specificity rate of 91.3%, while having a sensitivity rate of 98%.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 50 条
  • [1] Diagnosis of COVID-19 based on chest X-ray images using pre-trained deep convolutional neural networks
    Shrivastava, Vimal K.
    Pradhan, Monoj K.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (01): : 169 - 180
  • [2] Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-ray Images
    Khishe, Mohammad
    Caraffini, Fabio
    Kuhn, Stefan
    MATHEMATICS, 2021, 9 (09)
  • [3] COVID-19 classification of X-ray images using deep neural networks
    Keidar, Daphna
    Yaron, Daniel
    Goldstein, Elisha
    Shachar, Yair
    Blass, Ayelet
    Charbinsky, Leonid
    Aharony, Israel
    Lifshitz, Liza
    Lumelsky, Dimitri
    Neeman, Ziv
    Mizrachi, Matti
    Hajouj, Majd
    Eizenbach, Nethanel
    Sela, Eyal
    Weiss, Chedva S.
    Levin, Philip
    Benjaminov, Ofer
    Bachar, Gil N.
    Tamir, Shlomit
    Rapson, Yael
    Suhami, Dror
    Atar, Eli
    Dror, Amiel A.
    Bogot, Naama R.
    Grubstein, Ahuva
    Shabshin, Nogah
    Elyada, Yishai M.
    Eldar, Yonina C.
    EUROPEAN RADIOLOGY, 2021, 31 (12) : 9654 - 9663
  • [4] COVID-19 classification of X-ray images using deep neural networks
    Daphna Keidar
    Daniel Yaron
    Elisha Goldstein
    Yair Shachar
    Ayelet Blass
    Leonid Charbinsky
    Israel Aharony
    Liza Lifshitz
    Dimitri Lumelsky
    Ziv Neeman
    Matti Mizrachi
    Majd Hajouj
    Nethanel Eizenbach
    Eyal Sela
    Chedva S. Weiss
    Philip Levin
    Ofer Benjaminov
    Gil N. Bachar
    Shlomit Tamir
    Yael Rapson
    Dror Suhami
    Eli Atar
    Amiel A. Dror
    Naama R. Bogot
    Ahuva Grubstein
    Nogah Shabshin
    Yishai M. Elyada
    Yonina C. Eldar
    European Radiology, 2021, 31 : 9654 - 9663
  • [5] Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks
    Khasawneh, Natheer
    Fraiwan, Mohammad
    Fraiwan, Luay
    Khassawneh, Basheer
    Ibnian, Ali
    SENSORS, 2021, 21 (17)
  • [6] Ensemble of Convolutional Neural Networks for COVID-19 Localization on Chest X-ray Images
    Marcomini, Karem D.
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (08)
  • [7] Detection of COVID-19 from X-Ray Images Using Transfer Learning Neural Networks
    Majeed, Sayf A.
    Darghaoth, Ahmed M. H.
    Hamed, Nama M. Z.
    Yahya, Yahya Ahmed
    Raed, Sara
    Dawood, Younis S.
    PROCEEDING OF 2021 2ND INFORMATION TECHNOLOGY TO ENHANCE E-LEARNING AND OTHER APPLICATION (IT-ELA 2021), 2021, : 58 - 63
  • [8] A DEEP LEARNING MODEL FOR DETECTING COVID-19 FROM CHEST X-RAY IMAGES USING CONVOLUTIONAL NEURAL NETWORKS
    Subhani, G. M.
    Preethi, Ch
    Laxmi, Ch Prasanna
    Prashanth, S.
    Fahad, Syed
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 1564 - 1572
  • [9] COVIDetection: deep convolutional neural networks-based automatic detection of COVID-19 with chest x-ray images
    Geetha R.
    Balasubramanian M.
    Devi K.R.
    Research on Biomedical Engineering, 2022, 38 (3) : 955 - 964
  • [10] Detection of COVID-19 from X-Ray Images using Deep Neural Networks
    Gupta, Eesha
    Mathur, Pratistha
    Srivastava, Devesh Kumar
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 722 - 728