Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial activity

被引:126
|
作者
Zhang, Yiqing [1 ,2 ]
Xiao, Yongjun [1 ]
Zhong, Yang [3 ]
Lim, Teik-Thye [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639789, Singapore
[2] Nanyang Technol Univ, NEWRI, 1 Cleantech Loop,CleanTech One, Singapore 637141, Singapore
[3] Nanyang Technol Univ, Sch Chem & Biol Engn, 50 Nanyang Ave, Singapore 639789, Singapore
关键词
UV; H2O2; Persulfate; Amoxicillin; Degradation; BETA-LACTAM ANTIBIOTICS; RATE CONSTANTS; PHOTOCHEMICAL DEGRADATION; HYDROXYL RADICALS; ENERGY EFFICIENCY; PULSE-RADIOLYSIS; FULVIC-ACID; OXIDATION; UV; WATER;
D O I
10.1016/j.cej.2019.04.160
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The extensive use of non-metabolized amoxicillin (AMX) has led to the contamination of the aquatic environment, which requires effective treatment methods. This study compares the reaction kinetics, degradation pathways, and antibacterial activity of AMX in the UV/H2O2 and UV/persulfate (S2O82-, PS) systems. UV irradiation alone shows a negligible effect on AMX degradation, while the addition of H2O2 or PS increases the degradation efficiency of AMX significantly due to the generation of HO center dot and SO4 center dot-. The second-order rate constants of AMX with HO center dot and SO4 center dot- are 3.9 x 10(9) M-1 s(-1) and 3.5 x 10(9) M-1 s(-1), respectively. In the UV/PS system at neutral pH, the contributions of UV, HO center dot, and SO4 center dot- for AMX degradation are 7.3%, 22.8%, and 69.9%, respectively. The degradation efficiency of AMX decreases with the presence of natural organic matter and inorganic anions in the water matrices. Based on the experimental evidence substantiated with theoretical calculations, the degradation pathways of AMX in the UV/H2O2 and UV/PS systems were proposed, including hydroxylation (+ 16 Da), hydrolysis (+ 18 Da), and decarboxylation (- 44 Da). The frontier electron density of AMX was calculated to predict the susceptible regions to HO center dot and SO4 center dot- attack. The antibacterial activity of AMX solution decreases significantly after applying UV/H2O2 or UV/PS processes. UV/H2O2 is more cost-effective than UV/PS process in degrading AMX.
引用
收藏
页码:420 / 428
页数:9
相关论文
共 50 条
  • [21] Comparison of aniline removal by UV/CaO2 and UV/H2O2: Degradation kinetics and mechanism
    Xue, Gang
    Zheng, Minghui
    Qian, Yajie
    Li, Qian
    Gao, Pin
    Liu, Zhenhong
    Chen, Hong
    Li, Xiang
    CHEMOSPHERE, 2020, 255 (255)
  • [22] Influence of solution pH on degradation of atrazine during UV and UV/H2O2 oxidation: kinetics, mechanism, and degradation pathways
    Liu, Yucan
    Zhu, Kai
    Su, Miaomiao
    Zhu, Huayu
    Lu, Jianbo
    Wang, Yuxia
    Dong, Jinkun
    Qin, Hao
    Wang, Ying
    Zhang, Yan
    RSC ADVANCES, 2019, 9 (61) : 35847 - 35861
  • [23] Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison
    Ding, Xinxin
    Gutierrez, Leonardo
    Croue, Jean-Philippe
    Li, Minrui
    Wang, Lijun
    Wang, Yuru
    CHEMOSPHERE, 2020, 253 (253)
  • [24] Degradation of antipyrine by UV, UV/H2O2 and UV/PS
    Tan, Chaoqun
    Gao, Naiyun
    Deng, Yang
    Zhang, Yongji
    Sui, Minghao
    Deng, Jing
    Zhou, Shiqing
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 260 : 1008 - 1016
  • [25] Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate
    Yang, Yi
    Lu, Xinglin
    Jiang, Jin
    Ma, Jun
    Liu, Guanqi
    Cao, Ying
    Liu, Weili
    Li, Juan
    Pang, Suyan
    Kong, Xiujuan
    Luo, Congwei
    WATER RESEARCH, 2017, 118 : 196 - 207
  • [26] Comparison of ribavirin degradation in the UV/H2O2 and UV/PDS systems: Reaction mechanism, operational parameter and toxicity evaluation
    Jiang, Jinchan
    An, Zexiu
    Li, Mingxue
    Huo, Yanru
    Zhou, Yuxin
    Xie, Ju
    He, Maoxia
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (01):
  • [27] Degradation of chloroquine phosphate during UV/H2O2 process: Performance, kinetics, and degradation pathways
    Dai, Haofeng
    Luo, Wei
    Jin, Lei
    Deng, Lin
    Wang, Qing
    Hu, Jun
    Singh, Rajendra Prasad
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [28] Degradation kinetics of caffeine in water by UV/H2O2 and UV/TiO2
    Rendel, Pedro M.
    Rytwo, Giora
    DESALINATION AND WATER TREATMENT, 2020, 173 : 231 - 242
  • [29] Comparison of UV/H2O2 and UV/TiO2 for the degradation of metaldehyde: Kinetics and the impact of background organics
    Autin, Olivier
    Hart, Julie
    Jarvis, Peter
    MacAdam, Jitka
    Parsons, Simon A.
    Jefferson, Bruce
    WATER RESEARCH, 2012, 46 (17) : 5655 - 5662
  • [30] Degradation of acetic acid by UV/H2O2 reaction
    Kang, Chunli
    Peng, Fei
    Guo, Jing
    Guo, Ping
    Xue, Honghai
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 5030 - 5033