Doubling of entanglement spectrum in tensor renormalization group

被引:25
|
作者
Ueda, Hiroshi [1 ]
Okunishi, Kouichi [2 ]
Nishino, Tomotoshi [3 ]
机构
[1] RIKEN, Condensed Matter Theory Lab, Wako, Saitama 3510198, Japan
[2] Niigata Univ, Dept Phys, Niigata 9502181, Japan
[3] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 07期
关键词
3D CLASSICAL-MODELS; FORMULATION; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevB.89.075116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the entanglement spectrum in HOTRG-tensor renormalization group (RG) method combined with the higher order singular value decomposition-for two-dimensional (2D) classical vertex models. In the off-critical region, it is explained that the entanglement spectrum associated with the RG transformation is described by "doubling" of the spectrum of a corner transfer matrix. We then demonstrate that the doubling actually occurs for the square-lattice Ising model by HOTRG calculations up to D = 64, where D is the cutoff dimension of tensors. At the critical point, we also find that a nontrivial D scaling behavior appears in the entanglement entropy. We mention about the HOTRG for the 1D quantum system as well.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Tensor renormalization group approach to classical dimer models
    Roychowdhury, Krishanu
    Huang, Ching-Yu
    PHYSICAL REVIEW B, 2015, 91 (20):
  • [42] Renormalization Group Flows of Hamiltonians Using Tensor Networks
    Bal, M.
    Marien, M.
    Haegeman, J.
    Verstraete, F.
    PHYSICAL REVIEW LETTERS, 2017, 118 (25)
  • [43] Density Matrix Renormalization Group with Tensor Processing Units
    Ganahl, Martin
    Beall, Jackson
    Hauru, Markus
    Lewis, Adam G. M.
    Wojno, Tomasz
    Yoo, Jae Hyeon
    Zou, Yijian
    Vidal, Guifre
    PRX QUANTUM, 2023, 4 (01):
  • [44] Tensor renormalization group algorithms with a projective truncation method
    Nakamura, Yoshifumi
    Oba, Hideaki
    Takeda, Shinji
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [45] Quantum error correction and entanglement spectrum in tensor networks
    Ling, Yi
    Liu, Yuxuan
    Xian, Zhuo-Yu
    Xiao, Yikang
    PHYSICAL REVIEW D, 2019, 99 (02)
  • [46] Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems
    Rizzi, M.
    Montangero, S.
    Silvi, P.
    Giovannetti, V.
    Fazio, Rosario
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [47] Entanglement renormalization
    Vidal, G.
    PHYSICAL REVIEW LETTERS, 2007, 99 (22)
  • [48] Entanglement and Rényi entropies of (1+1)-dimensional O(3) nonlinear sigma model with tensor renormalization group
    Luo, Xiao
    Kuramashi, Yoshinobu
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [49] RENORMALIZATION-GROUP APPROACH TO THE RANDOM PERIOD-DOUBLING LATTICE
    HU, Y
    TIAN, DC
    WANG, LL
    PHYSICS LETTERS A, 1995, 207 (05) : 293 - 298
  • [50] GENERALIZED RENORMALIZATION-GROUP EQUATION FOR PERIOD-DOUBLING BIFURCATIONS
    LIU, KL
    LO, WS
    YOUNG, K
    PHYSICS LETTERS A, 1984, 105 (03) : 103 - 104