Classification and Casimir invariants of Lie-Poisson brackets

被引:65
|
作者
Thiffeault, JL
Morrison, PJ
机构
[1] Univ Texas, Inst Fus Studies, Austin, TX 78712 USA
[2] Univ Texas, Dept Phys, Austin, TX 78712 USA
关键词
Casimir invariants; Lie-Poisson brackets; Hamiltonian structure;
D O I
10.1016/S0167-2789(99)00155-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify Lie-Poisson brackets that are formed from Lie algebra extensions. The problem is relevant because many physical systems owe their Hamiltonian structure to such brackets. A classification involves reducing all brackets to a set of normal forms, and is achieved partially through the use of Lie algebra cohomology. For extensions of order less than five, the number of normal forms is small and they involve no free parameters. We derive a general method of finding Casimir invariants of Lie-Poisson bracket extensions. The Casimir invariants of all low-order brackets are explicitly computed. We treat in detail a four field model of compressible reduced magnetohydrodynamics. (C)2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:205 / 244
页数:40
相关论文
共 50 条
  • [41] INTEGRATORS FOR LIE-POISSON DYNAMIC-SYSTEMS
    CHANNELL, PJ
    SCOVEL, JC
    PHYSICA D, 1991, 50 (01): : 80 - 88
  • [42] The Lie-Poisson structure of the LAE-α equation
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 2 (01) : 25 - 57
  • [43] Lie-Poisson integrators: A Hamiltonian, variational approach
    Ma, Zhanhua
    Rowley, Clarence W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1609 - 1644
  • [44] Lie-Poisson gauge theories and κ-Minkowski electrodynamics
    Kupriyanov, V. G.
    Kurkov, M. A.
    Vitale, P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (11)
  • [45] Hamiltonian analysis in Lie-Poisson gauge theory
    Bascone, Francesco
    Kurkov, Maxim
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (06)
  • [46] Compatible Poisson Brackets on Lie Algebras
    A. V. Bolsinov
    A. V. Borisov
    Mathematical Notes, 2002, 72 : 10 - 30
  • [47] Compatible Poisson brackets on Lie algebras
    Bolsinov, AV
    Borisov, AV
    MATHEMATICAL NOTES, 2002, 72 (1-2) : 10 - 30
  • [48] ORTHOGONAL STRUCTURE ON A LIE-ALGEBRA AND THE ASSOCIATED LIE-POISSON STRUCTURE
    MEDINA, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (10): : 507 - 510
  • [49] Integrable quadratic Hamiltonians with a linear Lie-Poisson bracket
    Wolf, T.
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (06) : 1115 - 1127
  • [50] Numerical evidence of nonintegrability of certain Lie-Poisson system
    Maciejewski, AJ
    Gozdziewski, K
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 133 - 142