Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting: Sublogarithmic Proof or Sublinear Verifier

被引:2
|
作者
Kim, Sungwook [1 ]
Lee, Hyeonbum [2 ]
Seo, Jae Hong [2 ]
机构
[1] Seoul Womens Univ, Dept Informat Secur, Seoul 01797, South Korea
[2] Hanyang Univ, Dept Math & Res Inst Nat Sci, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
SIGNATURES;
D O I
10.1007/978-3-031-22966-4_14
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose three interactive zero-knowledge arguments for arithmetic circuit of size N in the common random string model, which can be converted to be non-interactive by Fiat-Shamir heuristics in the random oracle model. First argument features O(root logN) communication and round complexities and O(N) computational complexity for the verifier. Second argument features O(logN) communication and O(root N) computational complexity for the verifier. Third argument features O(logN) communication and O(root N logN) computational complexity for the verifier. Contrary to first and second arguments, the third argument is free of reliance on pairing-friendly elliptic curves. The soundness of three arguments is proven under the standard discrete logarithm and/or the double pairing assumption, which is at least as reliable as the decisional Diffie-Hellman assumption.
引用
收藏
页码:403 / 433
页数:31
相关论文
共 50 条
  • [31] Practical zero-knowledge arguments from Σ-protocols
    Zhao, YL
    Deng, RH
    Zang, BY
    Zhao, YM
    INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2005, 3828 : 288 - 298
  • [32] On diophantine complexity and statistical zero-knowledge arguments
    Lipmaa, H
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2003, 2003, 2894 : 398 - 415
  • [33] Classical zero-knowledge arguments for quantum computations
    Vidick, Thomas
    Zhang, Tina
    QUANTUM, 2020, 4
  • [34] Compact zero-knowledge arguments for Blum integers ☆
    Maire, Jules
    Vergnaud, Damien
    THEORETICAL COMPUTER SCIENCE, 2025, 1038
  • [35] Zero-Knowledge Arguments for Subverted RSA Groups
    Kolonelos, Dimitris
    Maller, Mary
    Volkhov, Mikhail
    PUBLIC-KEY CRYPTOGRAPHY - PKC 2023, PT II, 2023, 13941 : 512 - 541
  • [36] Zero-Knowledge Proof for Lattice-Based Group Signature Schemes with Verifier-Local Revocation
    Perera, Maharage Nisansala Sevwandi
    Koshiba, Takeshi
    ADVANCES IN NETWORK-BASED INFORMATION SYSTEMS, NBIS-2018, 2019, 22 : 772 - 782
  • [37] Efficient Delegation of Zero-Knowledge Proofs of Knowledge in a Pairing-Friendly Setting
    Canard, Sebastien
    Pointcheval, David
    Sanders, Olivier
    PUBLIC-KEY CRYPTOGRAPHY - PKC 2014, 2014, 8383 : 167 - 184
  • [38] Flashproofs: Efficient Zero-Knowledge Arguments of Range and Polynomial Evaluation with Transparent Setup
    Wang, Nan
    Chau, Sid Chi-Kin
    ADVANCES IN CRYPTOLOGY- ASIACRYPT 2022, PT II, 2022, 13792 : 219 - 248
  • [39] Memorizable interactive proof and zero-knowledge proof systems
    Ning Chen
    Jia-Wei Rong
    Journal of Computer Science and Technology, 2004, 19 : 936 - 941
  • [40] Efficient 4-round zero-knowledge proof system for NP
    Zhao, YL
    Zhu, H
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2002, 12 (12) : 948 - 952