THE ASYMPTOTIC BEHAVIOUR OF FRACTIONAL LATTICE SYSTEMS WITH VARIABLE DELAY

被引:4
|
作者
Liu, Linfang [1 ]
Caraballo, Tomas [2 ]
Kloeden, Peter E. [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Dept Appl Math, Xianning West Rd 28, Xian 710049, Shaanxi, Peoples R China
[2] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, Spain
[3] Univ Tubingen, Dept Math Inst, D-72076 Tubingen, Germany
关键词
fractional substantial derivative; fractional lattice systems; variable delay; Leray-Schauder theorem; global attracting sets; ALGORITHMS;
D O I
10.1515/fca-2019-0038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and uniqueness of global solutions for a fractional functional differential equation is established. The asymptotic behaviour of a lattice system with a fractional substantial time derivative and variable time delays is investigated. The existence of a global attracting set is established. It is shown to be a singleton set under a certain condition on the Lipschitz constant.
引用
收藏
页码:681 / 698
页数:18
相关论文
共 50 条
  • [31] ASYMPTOTIC BEHAVIOUR OF RANDOMISED FRACTIONAL VOLATILITY MODELS
    Horvath, Blanka
    Jacquier, Antoine
    Lacombe, Chloe
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (02) : 496 - 523
  • [32] Further results on the asymptotic stability of Riemann–Liouville fractional neutral systems with variable delays
    Yener Altun
    Advances in Difference Equations, 2019
  • [34] Asymptotic behaviour of impulsive delay differential equation
    Jiang, Y
    Jurang, Y
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (09): : 843 - 851
  • [35] Asymptotic behaviour for a nonlocal diffusion equation on a lattice
    Liviu I. Ignat
    Julio D. Rossi
    Zeitschrift für angewandte Mathematik und Physik, 2008, 59 : 918 - 925
  • [36] Asymptotic behaviour of solutions to non-commensurate fractional-order planar systems
    Kai Diethelm
    Ha Duc Thai
    Hoang The Tuan
    Fractional Calculus and Applied Analysis, 2022, 25 : 1324 - 1360
  • [37] Asymptotic behaviour for a nonlocal diffusion equation on a lattice
    Ignat, Liviu I.
    Rossi, Julio D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (05): : 918 - 925
  • [38] Asymptotic behaviour of the density of states on a random lattice
    Fortin, JY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (05): : L57 - L65
  • [39] Asymptotic behaviour of solutions to non-commensurate fractional-order planar systems
    Diethelm, Kai
    Thai, Ha Duc
    Tuan, Hoang The
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1324 - 1360
  • [40] OSCILLATORY AND ASYMPTOTIC PROPERTIES OF FRACTIONAL DELAY DIFFERENTIAL EQUATIONS
    Cermak, Jan
    Kisela, Tomas
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,