Dirichlet series;
probability measure;
random element;
universality;
weak convergence;
D O I:
10.1080/10652460290009088
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the paper the function Z(s) = Sigma(m=1)(infinity) g(m)m-s, Rs >1 , where g(m) is a multiplicative function from the class {\cal M-beta,M-theta(c(1), c(2)) is considered. It is proved that the function Z(s) is universal, i.e. any function continuous and non-vanishing on a compact subset K of the strip {s is an element of C : beta < Rs < 1} with connected complement and analytic in the interior of K can be uniformly on K approximated by translations of the function Z(s) .
机构:
Siauliai Univ, Inst Informat Math & E Studies, Dept Math, LT-77156 Shiauliai, LithuaniaSiauliai Univ, Inst Informat Math & E Studies, Dept Math, LT-77156 Shiauliai, Lithuania
Kacinskaite, Roma
Matsumoto, Kohji
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, JapanSiauliai Univ, Inst Informat Math & E Studies, Dept Math, LT-77156 Shiauliai, Lithuania
机构:
Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, LithuaniaVilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
机构:
Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, LithuaniaVilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
机构:
Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, LithuaniaVilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania