Consistent estimation of survival functions under uniform stochastic ordering; the k-sample case
被引:4
|
作者:
El Barmi, Hammou
论文数: 0引用数: 0
h-index: 0
机构:
CUNY Bernard M Baruch Coll, Dept Stat & Comp Informat Syst, One Baruch Way, New York, NY 10010 USACUNY Bernard M Baruch Coll, Dept Stat & Comp Informat Syst, One Baruch Way, New York, NY 10010 USA
El Barmi, Hammou
[1
]
Mukerjee, Hari
论文数: 0引用数: 0
h-index: 0
机构:
Wichita State Univ, Dept Math & Stat, 1845 Fairmt, Wichita, KS 67260 USACUNY Bernard M Baruch Coll, Dept Stat & Comp Informat Syst, One Baruch Way, New York, NY 10010 USA
Mukerjee, Hari
[2
]
机构:
[1] CUNY Bernard M Baruch Coll, Dept Stat & Comp Informat Syst, One Baruch Way, New York, NY 10010 USA
[2] Wichita State Univ, Dept Math & Stat, 1845 Fairmt, Wichita, KS 67260 USA
Let S-1, S-2, ... , S-k be survival functions of life distributions. They are said to be uniformly stochastically ordered, S-1 <=(uso) S-2 <=(uso) ... <=(uso) S-k, if S-i/Si+1 is a survival function for 1 <= i <= k - 1. The nonparametric maximum likelihood estimators of the survival functions subject to this ordering constraint are known to be inconsistent in general. Consistent estimators were developed only for the case of k = 2. In this paper we provide consistent estimators in the k-sample case, with and without censoring. In proving consistency, we needed to develop a new algorithm for isotonic regression that may be of independent interest. (C) 2015 Elsevier Inc. All rights reserved.
机构:
CUNY, Baruch Coll, Paul H Chook Dept Informat Syst & Stat, One Baruch Way, New York, NY 10010 USACUNY, Baruch Coll, Paul H Chook Dept Informat Syst & Stat, One Baruch Way, New York, NY 10010 USA