No-reference Image Quality Assessment With A Gradient-induced Dictionary

被引:3
|
作者
Li, Leida [1 ]
Wu, Dong [1 ]
Wu, Jinjian [2 ]
Qian, Jiansheng [1 ]
Chen, Beijing [3 ]
机构
[1] China Univ Min & Technol, Sch Informat & Elect Engn, Beijing, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing, Jiangsu, Peoples R China
关键词
Image quality assessment; no-reference; dictionary; K-means clustering; SVM;
D O I
10.3837/tiis.2016.01.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.
引用
收藏
页码:288 / 307
页数:20
相关论文
共 50 条
  • [31] A statistical method for no-reference image quality assessment
    Lu, Fangfang
    Zhao, Qunfei
    Liu, Huanxi
    Journal of Computational Information Systems, 2014, 10 (16): : 7203 - 7212
  • [32] No-reference/Blind Image Quality Assessment: A Survey
    Xu, Shaoping
    Jiang, Shunliang
    Min, Weidong
    IETE TECHNICAL REVIEW, 2017, 34 (03) : 223 - 245
  • [33] No-Reference Image Quality Assessment for Defocus Restoration
    Zhang, Chengshuo
    Shi, Zelin
    Xu, Baoshu
    Feng, Bin
    PROCEEDINGS 2016 FIRST INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING (ICMIP 2016), 2016, : 51 - 56
  • [34] BNB Method for No-Reference Image Quality Assessment
    Fang, Ruigang
    Al-Bayaty, Richard
    Wu, Dapeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (07) : 1381 - 1391
  • [35] No-reference quality assessment of underwater image enhancement
    Yi, Xiao
    Jiang, Qiuping
    Zhou, Wei
    DISPLAYS, 2024, 81
  • [36] No-reference image quality assessment for dehazed images
    Ji, Bin
    Ji, Yunyun
    Gao, Han
    Hu, Xuedong
    Ding, Feng
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (01)
  • [37] Image Quality: a tool for No-Reference assessment methods
    Corchs, Silvia
    Gasparini, Francesca
    Marini, Fabrizio
    Schettini, Raimondo
    IMAGE QUALITY AND SYSTEM PERFORMANCE VIII, 2011, 7867
  • [38] Domain Fingerprints for No-Reference Image Quality Assessment
    Xia, Weihao
    Yang, Yujiu
    Xue, Jing-Hao
    Xiao, Jing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (04) : 1332 - 1341
  • [39] No-reference image quality assessment algorithms: A survey
    Kamble, Vipin
    Bhurchandi, K. M.
    OPTIK, 2015, 126 (11-12): : 1090 - 1097
  • [40] No-reference image quality assessment in contourlet domain
    Lu, Wen
    Zeng, Kai
    Tao, Dacheng
    Yuan, Yuan
    Gao, Xinbo
    NEUROCOMPUTING, 2010, 73 (4-6) : 784 - 794