Machine Learning Toxicity Prediction: Latest Advances by Toxicity End Point

被引:60
|
作者
Cavasotto, Claudio N. [1 ,3 ,4 ]
Scardino, Valeria [1 ,2 ]
机构
[1] Univ Austral, Austral Inst Appl Artificial Intelligence, B1629AHJ, Pilar, Buenos Aires, Argentina
[2] Meton Inc, Wilmington, DE 19801 USA
[3] Univ Austral, Computat Drug Design & Biomed Informat Lab, Inst Invest Med Traslac IIMT, CONICET, B1629AHJ, Pilar, Buenos Aires, Argentina
[4] Univ Austral, Fac Ciencias Biomed, Fac Ingn, B1630FHB, Pilar, Buenos Aires, Argentina
来源
ACS OMEGA | 2022年 / 7卷 / 51期
关键词
IN-SILICO PREDICTION; DRUG DISCOVERY; CLASSIFICATION MODELS; ADMET EVALUATION; WEB SERVER; BLACK-BOX; HERG; DATABASE; TOXICOLOGY; INTERPRETABILITY;
D O I
10.1021/acsomega.2c05693
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning (ML) models to predict the toxicity of small molecules have garnered great attention and have become widely used in recent years. Computational toxicity prediction is particularly advantageous in the early stages of drug discovery in order to filter out molecules with high probability of failing in clinical trials. This has been helped by the increase in the number of large toxicology databases available. However, being an area of recent application, a greater understanding of the scope and applicability of ML methods is still necessary. There are various kinds of toxic end points that have been predicted in silico. Acute oral toxicity, hepatotoxicity, cardiotoxicity, mutagenicity, and the 12 Tox21 data end points are among the most commonly investigated. Machine learning methods exhibit different performances on different data sets due to dissimilar complexity, class distributions, or chemical space covered, which makes it hard to compare the performance of algorithms over different toxic end points. The general pipeline to predict toxicity using ML has already been analyzed in various reviews. In this contribution, we focus on the recent progress in the area and the outstanding challenges, making a detailed description of the state-of-the-art models implemented for each toxic end point. The type of molecular representation, the algorithm, and the evaluation metric used in each research work are explained and analyzed. A detailed description of end points that are usually predicted, their clinical relevance, the available databases, and the challenges they bring to the field are also highlighted.
引用
收藏
页码:47536 / 47546
页数:11
相关论文
共 50 条
  • [21] Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy
    Isaksson, Lars J.
    Pepa, Matteo
    Zaffaroni, Mattia
    Marvaso, Giulia
    Alterio, Daniela
    Volpe, Stefania
    Corrao, Giulia
    Augugliaro, Matteo
    Starzynska, Anna
    Leonardi, Maria C.
    Orecchia, Roberto
    Jereczek-Fossa, Barbara A.
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [22] Machine Learning-Enabled Drug-Induced Toxicity Prediction
    Bai, Changsen
    Wu, Lianlian
    Li, Ruijiang
    Cao, Yang
    He, Song
    Bo, Xiaochen
    ADVANCED SCIENCE, 2025,
  • [23] A New Hybrid Machine Learning Approach for Prediction of Phenanthrene Toxicity on Mice
    Xu, Yueting
    Yu, Keting
    Wang, Pengjun
    Chen, Huiling
    Zhao, Xuehua
    Zhu, Jiayin
    IEEE ACCESS, 2019, 7 : 138461 - 138472
  • [24] Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity
    Hemmerich, Jennifer
    Troger, Florentina
    Fuezi, Barbara
    Ecker, Gerhard F.
    MOLECULAR INFORMATICS, 2020, 39 (05)
  • [25] Machine learning prediction of financial toxicity in patients with resected lung cancer
    Deboever, Nathaniel
    Al-Tashi, Qasem
    Eisenberg, Michael
    Hofstetter, Wayne
    Mehran, Reza
    Rice, David
    Roth, Jack
    Sepesi, Boris
    Swisher, Stephen
    Vaporciyan, Ara
    Walsh, Garrett
    Antonoff, Mara
    Wu, Jia
    Rajaram, Ravi
    CANCER RESEARCH, 2023, 83 (07)
  • [26] PREDICTION OF RESPIRATORY TOXICITY USING CHEMICAL INFORMATION AND MACHINE LEARNING TECHNIQUES
    Ghosh, Dipayan
    Koneti, Geervani
    Ramamurthi, Narayanan
    DRUG METABOLISM AND PHARMACOKINETICS, 2019, 34 (01) : S34 - S34
  • [27] Leveraging ChemBERTa and machine learning for accurate toxicity prediction of ionic liquids
    Sadaghiyanfam, Safa
    Kamberaj, Hiqmet
    Isler, Yalcin
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2025, 171
  • [28] MolToxPred: small molecule toxicity prediction using machine learning approach
    Setiya, Anjali
    Jani, Vinod
    Sonavane, Uddhavesh
    Joshi, Rajendra
    RSC ADVANCES, 2024, 14 (06) : 4201 - 4220
  • [29] Machine learning model for random forest acute oral toxicity prediction
    Elsayad, A. M.
    Elsayad, K. A.
    Zeghid, M.
    Khan, A. N.
    Baareh, A. K. M.
    Sadiq, A.
    Mukhtar, S. A.
    Ali, H. F.
    Abd El-kade, S.
    GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM, 2025, 11 (01): : 21 - 38
  • [30] In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches
    Xu, Minjie
    Yang, Hongbin
    Liu, Guixia
    Tang, Yun
    Li, Weihua
    JOURNAL OF APPLIED TOXICOLOGY, 2022, 42 (11) : 1766 - 1776