Visual comfort enhancement in stereoscopic 3D images using saliency-adaptive nonlinear disparity mapping

被引:15
|
作者
Jung, Cheolkon [1 ]
Cao, Lihui [1 ]
Liu, Hongmin [1 ]
Kim, Joongkyu [2 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
[2] Sungkyunkwan Univ, Coll Informat & Commun Engn, Suwon 440746, South Korea
基金
中国国家自然科学基金;
关键词
Stereoscopic 3D (S3D) displays; Visual comfort enhancement; Saliency-adaptive; Salient region; Nonlinear disparity mapping; Depth-image-based-rendering (DIBR); DISCOMFORT; MODEL;
D O I
10.1016/j.displa.2015.05.006
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Perceptually salient regions have a significant effect on visual comfort in stereoscopic 3D (S3D) images. The conventional method of obtaining saliency maps is linear combination, which often weakens the saliency influence and distorts the original disparity range significantly. In this paper, we propose visual comfort enhancement in S3D images using saliency-adaptive nonlinear disparity mapping. First, we obtain saliency-adaptive disparity maps with visual sensitivity to maintain the disparity-based saliency influence. Then, we perform nonlinear disparity mapping based on a sigmoid function to minimize disparity distortions. Finally, we generate visually comfortable S3D images based on depth-image-based-rendering (DIBR). Experimental results demonstrate that the proposed method successfully improves visual comfort in S3D images by producing comfortable S3D images with high mean opinion score (MOS) while keeping the overall viewing image quality. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 50 条
  • [31] Local disparity remapping to enhance depth quality of stereoscopic 3D images using stereoacuity function
    Sohn, Hosik
    Jung, Yong Ju
    Ro, Yong Man
    STEREOSCOPIC DISPLAYS AND APPLICATIONS XXV, 2014, 9011
  • [32] 3D saliency guided deep quality predictor for no-reference stereoscopic images
    Messai, Oussama
    Chetouani, Aladine
    Hachouf, Fella
    Seghir, Zianou Ahmed
    NEUROCOMPUTING, 2022, 478 : 22 - 36
  • [33] Image Enhancement Based on Contrast Limited Adaptive Histogram Equalization for 3D Images of Stereoscopic Endoscopy
    Hai, Yuan
    Li, Ling
    Gu, Jia
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 668 - 672
  • [34] Depth manipulation using disparity histogram analysis for stereoscopic 3D
    Sangwoo Lee
    Younghui Kim
    Jungjin Lee
    Kyehyun Kim
    Kyunghan Lee
    Junyong Noh
    The Visual Computer, 2014, 30 : 455 - 465
  • [35] Depth manipulation using disparity histogram analysis for stereoscopic 3D
    Lee, Sangwoo
    Kim, Younghui
    Lee, Jungjin
    Kim, Kyehyun
    Lee, Kyunghan
    Noh, Junyong
    VISUAL COMPUTER, 2014, 30 (04): : 455 - 465
  • [36] Individual Variation in 3D Visual Fatigue Caused by Stereoscopic Images
    Lee, Jung-Hoon
    Song, Jang-Kun
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (02) : 500 - 504
  • [37] A study of visual fatigue and visual comfort for 3D HDTV/HDTV images
    Yano, S
    Ide, S
    Mitsuhashi, T
    Thwaites, H
    DISPLAYS, 2002, 23 (04) : 191 - 201
  • [38] Binocular Fusion Net: Deep Learning Visual Comfort Assessment for Stereoscopic 3D
    Kim, Hak Gu
    Jeong, Hyunwook
    Lim, Heoun-taek
    Ro, Yong Man
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (04) : 956 - 967
  • [39] A ROBUST 3D VISUAL SALIENCY COMPUTATION MODEL FOR HUMAN FIXATION PREDICTION OF STEREOSCOPIC VIDEOS
    Liu, Qiong
    Yang, You
    Li, Pian
    Li, Bei
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [40] A learning-based visual saliency prediction model for stereoscopic 3D video (LBVS-3D)
    Banitalebi-Dehkordi, Amin
    Pourazad, Mahsa T.
    Nasiopoulos, Panos
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (22) : 23859 - 23890