Mass Detection and Segmentation in Digital Breast Tomosynthesis Via Deep-Learning

被引:0
|
作者
Qin, G. [1 ,2 ]
Chen, H. [3 ]
Zeng, H. [2 ]
Xu, Y. [3 ]
Zhou, Z. [1 ]
Zhang, Q. [1 ]
Nguyen, D. [1 ]
Chen, W. [2 ]
Zhou, L. [3 ]
Jiang, S. [1 ]
机构
[1] UT Southwestern Med Ctr, Dept Radiat Oncol, Med Artificial Intelligence & Automat Lab, Dallas, TX USA
[2] Southern Med Univ, Nanfang Hosp, Dept Radiol, Guangzhou, Guangdong, Peoples R China
[3] Southern Med Univ, Sch Biomed Engn, Inst Med Instrument, Guangzhou, Guangdong, Peoples R China
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TU-J430-CA
引用
收藏
页码:E556 / E556
页数:1
相关论文
共 50 条
  • [21] Deep-learning method for tumor segmentation in breast DCE-MRI
    Zhang, Lei
    Luo, Zhimeng
    Chai, Ruimei
    Arefan, Dooman
    Sumkin, Jules
    Wu, Shandong
    MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [22] Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach
    William Lotter
    Abdul Rahman Diab
    Bryan Haslam
    Jiye G. Kim
    Giorgia Grisot
    Eric Wu
    Kevin Wu
    Jorge Onieva Onieva
    Yun Boyer
    Jerrold L. Boxerman
    Meiyun Wang
    Mack Bandler
    Gopal R. Vijayaraghavan
    A. Gregory Sorensen
    Nature Medicine, 2021, 27 : 244 - 249
  • [23] Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning
    Yousefi, Mina
    Krzyzak, Adam
    Suen, Ching Y.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 96 : 283 - 293
  • [24] Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach
    Lotter, William
    Diab, Abdul Rahman
    Haslam, Bryan
    Kim, Jiye G.
    Grisot, Giorgia
    Wu, Eric
    Wu, Kevin
    Onieva, Jorge Onieva
    Boyer, Yun
    Boxerman, Jerrold L.
    Wang, Meiyun
    Bandler, Mack
    Vijayaraghavan, Gopal R.
    Gregory Sorensen, A.
    NATURE MEDICINE, 2021, 27 (02) : 244 - +
  • [25] Deep learning denoising of digital breast tomosynthesis: Observer performance study of the effect on detection of microcalcifications in breast phantom images
    Chan, Heang-Ping
    Helvie, Mark A.
    Gao, Mingjie
    Hadjiiski, Lubomir
    Zhou, Chuan
    Garver, Kim
    Klein, Katherine A.
    McLaughlin, Carol
    Oudsema, Rebecca
    Rahman, W. Tania
    Roubidoux, Marilyn A.
    MEDICAL PHYSICS, 2023, 50 (10) : 6177 - 6189
  • [26] Deep learning model for breast cancer diagnosis based on bilateral asymmetrical detection (BilAD) in digital breast tomosynthesis images
    Shimokawa, Daiki
    Takahashi, Kengo
    Kurosawa, Daiya
    Takaya, Eichi
    Oba, Ken
    Yagishita, Kazuyo
    Fukuda, Toshinori
    Tsunoda, Hiroko
    Ueda, Takuya
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2023, 16 (01) : 20 - 27
  • [27] Deep learning model for breast cancer diagnosis based on bilateral asymmetrical detection (BilAD) in digital breast tomosynthesis images
    Daiki Shimokawa
    Kengo Takahashi
    Daiya Kurosawa
    Eichi Takaya
    Ken Oba
    Kazuyo Yagishita
    Toshinori Fukuda
    Hiroko Tsunoda
    Takuya Ueda
    Radiological Physics and Technology, 2023, 16 : 20 - 27
  • [28] Deep-learning-enabled volumetric breast density estimation with digital breast tomosynthesis
    Ahluwalia, Vinayak S.
    Mankowski, Walter
    Pati, Sarthak
    Bakas, Spyridon
    Brooks, Ari
    Vachon, Celine M.
    Conant, Emily F.
    Gastounioti, Aimilia
    Kontos, Despina
    CANCER RESEARCH, 2022, 82 (12)
  • [29] Automated Tumor Segmentation in Breast-Conserving Surgery Using Deep Learning on Breast Tomosynthesis
    Wu, Wen-Pei
    Chen, Yu-Wen
    Wu, Hwa-Koon
    Chen, Dar-Ren
    Huang, Yu-Len
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [30] Cancer Detection with Digital Breast Tomosynthesis
    Harris, Lisa Katherine
    Mai-Tran, Vivian
    Durand, Melissa
    CURRENT RADIOLOGY REPORTS, 2020, 8 (04)