Quantized Gromov-Hausdorff distance

被引:36
|
作者
Wu, Wei [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
quantized metric space; matrix Lipschitz seminorm; matrix seminorm; matrix state space; quantized; Gromov-Hausdorff distance;
D O I
10.1016/j.jfa.2005.02.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quantized metric space is a matrix order unit space equipped with an operator space version of Rieffel's Lip-norm. We develop for quantized metric spaces an operator space version of quantum Gromov-Hausdorff distance. We show that two quantized metric spaces are completely isometric if and only if their quantized Gromov-Hausdorff distance is zero. We establish a completeness theorem. As applications, we show that a quantized metric space with I-exact underlying matrix order unit space is a limit of matrix algebras with respect to quantized Gromov-Hausdorff distance, and that matrix algebras converge naturally to the sphere for quantized Gromov-Hausdorff distance. (C) 2006 Published by Elsevier Inc.
引用
收藏
页码:58 / 98
页数:41
相关论文
共 50 条
  • [41] GROMOV-HAUSDORFF STABILITY FOR GROUP ACTIONS
    Dong, Meihua
    Lee, Keonhee
    Morales, Carlos
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (03) : 1347 - 1357
  • [42] Hausdorff and Gromov-Hausdorff Stable Subsets of the Medial Axis
    Lieutier, Andre
    Wintraecken, Mathijs
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1768 - 1776
  • [43] Gromov-Hausdorff limits of closed surfaces
    Dott, Tobias
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):
  • [44] Metric trees in the Gromov-Hausdorff space
    Ishiki, Yoshito
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (01): : 73 - 82
  • [45] ISOMETRY GROUP OF GROMOV-HAUSDORFF SPACE
    Ivanov, Alexander O.
    Tuzhilin, Alexey A.
    MATEMATICKI VESNIK, 2019, 71 (1-2): : 123 - 154
  • [46] Gromov-Hausdorff convergence of metric spaces
    Peter, Petersen V
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (01):
  • [47] Stability and equivariant Gromov-Hausdorff convergence
    Alattar, Mohammad
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (08) : 2585 - 2596
  • [48] EXPLICIT GEODESICS IN GROMOV-HAUSDORFF SPACE
    Chowdhury, Samir
    Memoli, Facundo
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2018, 25 : 48 - 59
  • [49] Gromov-hausdorff convergence of metric spaces
    Petersen, Peter
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [50] A natural compactification of the Gromov-Hausdorff space
    Nakajima, Hiroki
    Shioya, Takashi
    GEOMETRIAE DEDICATA, 2024, 218 (01)