Quantized Gromov-Hausdorff distance

被引:36
|
作者
Wu, Wei [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
quantized metric space; matrix Lipschitz seminorm; matrix seminorm; matrix state space; quantized; Gromov-Hausdorff distance;
D O I
10.1016/j.jfa.2005.02.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quantized metric space is a matrix order unit space equipped with an operator space version of Rieffel's Lip-norm. We develop for quantized metric spaces an operator space version of quantum Gromov-Hausdorff distance. We show that two quantized metric spaces are completely isometric if and only if their quantized Gromov-Hausdorff distance is zero. We establish a completeness theorem. As applications, we show that a quantized metric space with I-exact underlying matrix order unit space is a limit of matrix algebras with respect to quantized Gromov-Hausdorff distance, and that matrix algebras converge naturally to the sphere for quantized Gromov-Hausdorff distance. (C) 2006 Published by Elsevier Inc.
引用
收藏
页码:58 / 98
页数:41
相关论文
共 50 条
  • [1] Hausdorff and Gromov-Hausdorff distance
    PROBILITY AND REAL TREES, 2008, 1920 : 45 - 68
  • [2] The Gromov-Hausdorff distance between spheres
    Lim, Sunhyuk
    Memoli, Facundo
    Smith, Zane
    GEOMETRY & TOPOLOGY, 2023, 27 (09) : 3733 - 3800
  • [3] A Lorentzian Gromov-Hausdorff notion of distance
    Noldus, J
    CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (04) : 839 - 850
  • [4] Matricial quantum Gromov-Hausdorff distance
    Kerr, D
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (01) : 132 - 167
  • [5] Branching Geodesics of the Gromov-Hausdorff Distance
    Ishiki, Yoshito
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 109 - 128
  • [6] Vector Bundles and Gromov-Hausdorff Distance
    Rieffel, Marc A.
    JOURNAL OF K-THEORY, 2010, 5 (01) : 39 - 103
  • [7] Approximating Gromov-Hausdorff distance in Euclidean space
    Majhi, Sushovan
    Vitter, Jeffrey
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2024, 116
  • [9] Computing the Gromov-Hausdorff Distance for Metric Trees
    Agarwal, Pankaj K.
    Fox, Kyle
    Nath, Abhinandan
    Sidiropoulos, Anastasios
    Wang, Yusu
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 529 - 540
  • [10] Estimates for Modified (Euclidean) Gromov-Hausdorff Distance
    Malysheva, O. S.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2024, 79 (04) : 201 - 205