A Chebyshev spectral method for the solution of nonlinear optimal control problems

被引:8
|
作者
Elnagar, GN
Razzaghi, M
机构
[1] MISSISSIPPI STATE UNIV,DEPT MATH & STAT,MISSISSIPPI STATE,MS 39762
[2] UNIV S CAROLINA,DEPT MATH,SPARTANBURG,SC
[3] AMIRKABIR UNIV,DEPT MATH,TEHRAN,IRAN
关键词
Chebyshev; spectral method; nonlinear problems;
D O I
10.1016/S0307-904X(97)00013-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a spectral method of solving the controlled Duffing oscillator. The method is based upon constructing the Mth degree interpolation polynomials, using Chebyshevs nodes, to approximate the state and the control vectors. The differential and integral expressions that arise from the system dynamics and the performance index are converted into some algebraic equations. The optimum condition is obtained by applying the method of constrained extremum. (C) 1997 by Elsevier Science Inc.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [21] The Chebyshev-Legendre collocation method for a class of optimal control problems
    Zhang, Wen
    Ma, Heping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (02) : 225 - 240
  • [22] Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems
    Kafash, B.
    Delavarkhalafi, A.
    Karbassi, S. M.
    SCIENTIA IRANICA, 2012, 19 (03) : 795 - 805
  • [23] A Chebyshev finite difference method for solving a class of optimal control problems
    El-Kady, M
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (07) : 883 - 895
  • [24] A Chebyshev-Gauss pseudospectral method for solving optimal control problems
    Tang, Xiao-Jun
    Wei, Jian-Li
    Chen, Kai
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (10): : 1778 - 1787
  • [25] Numerical Solution of a Class of Nonlinear Optimal Control Problems
    Alavi, S. A. Saeed
    Heydari, Aghileh
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (02): : 259 - 275
  • [26] The geometry of the solution set of nonlinear optimal control problems
    Osinga, Hinke M.
    Hauser, John
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (04) : 881 - 900
  • [27] The Geometry of the Solution Set of Nonlinear Optimal Control Problems
    Hinke M. Osinga
    John Hauser
    Journal of Dynamics and Differential Equations, 2006, 18 : 881 - 900
  • [28] An Optimal Solution to Infinite Horizon Nonlinear Control Problems
    Mohamed, Mohamed Naveed Gul
    Goyal, Raman
    Chakravorty, Suman
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1643 - 1648
  • [29] Nonlinear approximations for the solution of team optimal control problems
    Baglietto, M
    Parisini, T
    Zoppoli, R
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 4592 - 4594
  • [30] Solution of optimal control problems by a variational method
    Ternovskii V.V.
    Khapaev M.M.
    Moscow University Computational Mathematics and Cybernetics, 2010, 34 (2) : 97 - 99