USING MACHINE LEARNING TO PREDICT REALIZED VARIANCE

被引:0
|
作者
Carr, Peter [1 ]
Wu, Liuren [2 ]
Zhang, Zhibai [1 ]
机构
[1] NYU, Dept Finance & Risk Engn, Tandon Sch Engn, New York, NY 10003 USA
[2] CUNY, Baruch Coll, Zicklin Sch Business, New York, NY 10021 USA
来源
JOURNAL OF INVESTMENT MANAGEMENT | 2020年 / 18卷 / 02期
关键词
Volatility Prediction; Machine Learning; Neural Networks; Ridge Regression; Option Pricing; VOLATILITY; OPTIONS; BOND;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Volatility index is a portfolio of options and represents market expectation of the underlying security's future realized volatility/variance. Traditionally the index weighting is based on a variance swap pricing formula. In this paper we propose a new method for building volatility index by formulating a variance prediction problem using machine learning. We test algorithms including Ridge regression, Feedforward Neural Networks and Random Forest on S&P 500 Index option data. By conducting a time series validation we show that the new weighting method can achieve higher predictability to future return variance and require fewer options. It is also shown that the weighting method combining the traditional and the machine learning approaches performs the best.
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [21] Using Machine Learning Methods to Predict Autism Syndrome
    Alhakami, Hosam
    Alajlani, Fatimah
    Alghamdi, Alshymaa
    Baz, Abdullah
    Alsubait, Tahani
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (04): : 221 - 228
  • [22] Using machine learning to predict severe hypoglycaemia in hospital
    Fralick, Michael
    Dai, David
    Pou-Prom, Chloe
    Verma, Amol A.
    Mamdani, Muhammad
    DIABETES OBESITY & METABOLISM, 2021, 23 (10): : 2311 - 2319
  • [23] Using machine learning algorithms to predict colorectal polyps
    Xiao, Xingjian
    Liu, Shiyou
    Maqsood, Kubra
    Yi, Xiaohan
    Xie, Guoqun
    Zhao, Hailei
    Sun, Bo
    Mao, Jianying
    Xu, Xianglong
    LANCET REGIONAL HEALTH-WESTERN PACIFIC, 2025, 55 : 30 - 30
  • [24] Using Machine Learning Tools to Predict Compressor Stall
    Hipple, Samuel M.
    Bonilla-Alvarado, Harry
    Pezzini, Paolo
    Shadle, Lawrence
    Bryden, Kenneth M.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2020, 142 (07):
  • [25] Using machine learning algorithms to predict colorectal cancer
    Xiao, Xingjian
    Hong, Bo
    Maqsood, Kubra
    Yi, Xiaohan
    Xie, Guoqun
    Zhao, Hailei
    Sun, Bo
    Mao, Jianying
    Liu, Shiyou
    Xu, Xianglong
    LANCET REGIONAL HEALTH-WESTERN PACIFIC, 2025, 55
  • [26] Using machine learning to predict catastrophes in dynamical systems
    Berwald, Jesse
    Gedeon, Tomas
    Sheppard, John
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) : 2235 - 2245
  • [27] Using Machine Learning to Predict Condition of Sewer Pipes
    Mohammadi, Mohammadrza Malek
    Najafi, Mohammad
    Serajiantehrani, Ramtin
    Kaushal, Vinayak
    Hajyalikhani, Poorya
    PIPELINES 2021: PLANNING, 2021, : 185 - 195
  • [28] Using Machine Learning to Predict Laboratory Test Results
    Luo, Yuan
    Szolovits, Peter
    Dighe, Anand S.
    Baron, Jason M.
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2016, 145 (06) : 778 - 788
  • [29] El Nino, La Nina, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach
    Bonato, Matteo
    Cepni, Oguzhan
    Gupta, Rangan
    Pierdzioch, Christian
    JOURNAL OF FORECASTING, 2023, 42 (04) : 785 - 801
  • [30] Using machine learning to predict severity in acute pancreatitis
    Pearce, CB
    Gunn, SR
    Ahmed, A
    Johnson, CD
    GUT, 2004, 53 : A122 - A122