14.1% CsPbI3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation

被引:278
|
作者
Ling, Xufeng [1 ]
Zhou, Sijie [1 ]
Yuan, Jianyu [1 ]
Shi, Junwei [1 ]
Qian, Yuli [1 ]
Larson, Bryon W. [2 ]
Zhao, Qian [2 ]
Qin, Chaochao [3 ]
Li, Fangchao [1 ]
Shi, Guozheng [1 ]
Stewart, Connor [4 ]
Hu, Jiaxin [1 ]
Zhang, Xuliang [1 ]
Luther, Joseph M. [2 ]
Duhm, Steffen [1 ]
Ma, Wanli [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Joint Int Res Lab Carbon Based Funct Mat & Device, 199 Ren Ai Rd,Suzhou Ind Pk, Suzhou 215123, Jiangsu, Peoples R China
[2] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
[3] Henan Normal Univ, Coll Phys & Mat Sci, Xinxiang 453007, Henan, Peoples R China
[4] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada
基金
中国国家自然科学基金;
关键词
cesium acetate; CsPbI3; perovskite quantum dots; solar cells; surface passivation; ELECTRON EXTRACTION LAYER; ALPHA-CSPBI3; PEROVSKITE; HALIDE PEROVSKITES; LEAD IODIDE; EFFICIENT; PHOTOVOLTAICS; NANOCRYSTALS; ENERGY; PBS; NANOPARTICLES;
D O I
10.1002/aenm.201900721
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface manipulation of quantum dots (QDs) has been extensively reported to be crucial to their performance when applied into optoelectronic devices, especially for photovoltaic devices. In this work, an efficient surface passivation method for emerging CsPbI3 perovskite QDs using a variety of inorganic cesium salts (cesium acetate (CsAc), cesium idodide (CsI), cesium carbonate (Cs2CO3), and cesium nitrate (CsNO3)) is reported. The Cs-salts post-treatment can not only fill the vacancy at the CsPbI3 perovskite surface but also improve electron coupling between CsPbI3 QDs. As a result, the free carrier lifetime, diffusion length, and mobility of QD film are simultaneously improved, which are beneficial for fabricating high-quality conductive QD films for efficient solar cell devices. After optimizing the post-treatment process, the short-circuit current density and fill factor are significantly enhanced, delivering an impressive efficiency of 14.10% for CsPbI3 QD solar cells. In addition, the Cs-salt-treated CsPbI3 QD devices exhibit improved stability against moisture due to the improved surface environment of these QDs. These findings will provide insight into the design of high-performance and low-trap-states perovskite QD films with desirable optoelectronic properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Surface passivation for enhancing photovoltaic performance of carbon-based CsPbI3 perovskite solar cells
    Fu, Xiang
    Zhou, Kai
    zhou, Xin
    Ji, Heming
    Min, Yonggang
    Qian, Yannan
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 308
  • [22] Hybrid CdSe/CsPbI3 quantum dots for interface engineering in perovskite solar cells
    Ge, Jing
    Li, Weixin
    He, Xuan
    Chen, Hui
    Fang, Wei
    Du, Xing
    Li, Yuxuan
    Zhao, Lei
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (04) : 1837 - 1843
  • [23] Efficient Thermally Evaporated γ-CsPbI3 Perovskite Solar Cells
    Zhang, Zongbao
    Ji, Ran
    Kroll, Martin
    Hofstetter, Yvonne J.
    Jia, Xiangkun
    Becker-Koch, David
    Paulus, Fabian
    Loeffler, Markus
    Nehm, Frederik
    Leo, Karl
    Vaynzof, Yana
    ADVANCED ENERGY MATERIALS, 2021, 11 (29)
  • [24] Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%
    Jia, Donglin
    Chen, Jingxuan
    Qiu, Junming
    Ma, Huili
    Yu, Mei
    Liu, Jianhua
    Zhang, Xiaoliang
    JOULE, 2022, 6 (07) : 1632 - 1653
  • [25] Inorganic CsPbI3 Perovskite Coating on PbS Quantum Dot for Highly Efficient and Stable Infrared Light Converting Solar Cells
    Zhang, Xiaoliang
    Zhang, Jindan
    Phuyal, Dibya
    Du, Juan
    Tian, Lei
    Oberg, Viktor A.
    Johansson, Malin B.
    Cappel, Ute B.
    Karis, Olof
    Liu, Jianhua
    Rensmo, Hakan
    Boschloo, Gerrit
    Johansson, Erik M. J.
    ADVANCED ENERGY MATERIALS, 2018, 8 (06)
  • [26] Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI3/FAPbI3 Bilayer Structure
    Li, Fangchao
    Zhou, Sijie
    Yuan, Jianyu
    Qin, Chaochao
    Yang, Yingguo
    Shi, Junwei
    Ling, Xufeng
    Li, Youyong
    Ma, Wanli
    ACS ENERGY LETTERS, 2019, 4 (11) : 2571 - +
  • [27] Improved phase stability of the CsPbI3 perovskite via organic cation doping
    Zhang, Jiajia
    Yang, Lei
    Zhong, Yu
    Hao, Hequn
    Yang, Mei
    Liu, Renyong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (21) : 11175 - 11180
  • [28] Illumination Enhanced Crystallization and Defect Passivation for High Performance CsPbI3 Perovskite Solar Cells by Sacrificing Dye
    Zhang, Na
    Wang, Jungang
    Duan, Yuwei
    Yang, Shaomin
    Xu, Dongfang
    Lei, Xuruo
    Wu, Meizi
    Yuan, Ningyi
    Ding, Jianning
    Cui, Jian
    Liu, Zhike
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)
  • [29] Planar Perovskite Solar Cells Using Perovskite CsPbI3 Quantum Dots as Efficient Hole Transporting Layers
    Liang, Tsair-Chun
    Su, Hsin-Yu
    Chen, Sih-An
    Chen, Yen-Ju
    Chiang, Chung-Yu
    Chiang, Chih-Hsun
    Kao, Tzung-Ta
    Chen, Lung-Chien
    Lin, Chun-Cheng
    MATERIALS, 2022, 15 (24)
  • [30] Cesium acetate-assisted crystallization for high-performance inverted CsPbI3 perovskite solar cells
    Li, Tiantian
    Wu, Yue
    Liu, Zhou
    Yang, Yuanbo
    Luo, Haowen
    Li, Ludong
    Chen, Peng
    Gao, Xueping
    Tan, Hairen
    NANOTECHNOLOGY, 2022, 33 (37)