Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree-Fock

被引:70
|
作者
Tamayo-Mendoza, Teresa [1 ]
Kreisbeck, Christoph [1 ]
Lindh, Roland [2 ]
Aspuru-Guzik, Alaprimen [1 ,3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[2] Uppsala Univ, Uppsala Ctr Computat Chem, Dept Chem Angstrom, Theoret Chem Programme,UC3, Box 518, S-75120 Uppsala, Sweden
[3] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
2ND-ORDER PERTURBATION-THEORY; AB-INITIO CALCULATIONS; COUPLED-CLUSTER; ALGORITHMIC DIFFERENTIATION; CONFIGURATION-INTERACTION; SIMULTANEOUS-OPTIMIZATION; GEOMETRY OPTIMIZATION; ORDER DERIVATIVES; EXCITED-STATES; BOND FUNCTIONS;
D O I
10.1021/acscentsci.7b00586
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult, a Hartree-Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.
引用
收藏
页码:559 / 566
页数:8
相关论文
共 50 条
  • [41] PSEUDOSPECTRAL HARTREE-FOCK THEORY - APPLICATIONS AND ALGORITHMIC IMPROVEMENTS
    RINGNALDA, MN
    BELHADJ, M
    FRIESNER, RA
    JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (05): : 3397 - 3407
  • [42] COMPARISON OF A HARTREE, A HARTREE-FOCK, AND AN EXACT TREATMENT OF QUANTUM-DOT HELIUM
    PFANNKUCHE, D
    GUDMUNDSSON, V
    MAKSYM, PA
    PHYSICAL REVIEW B, 1993, 47 (04): : 2244 - 2250
  • [43] Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory
    Yanai, T
    Fann, GI
    Gan, ZT
    Harrison, RJ
    Beylkin, G
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (07): : 2866 - 2876
  • [44] APPLICATION OF HARTREE-FOCK VARIATIONAL METHOD TO CENTER-OF-MASS MOTION
    DREIZLER, RM
    KREJS, FR
    KLEIN, A
    NUCLEAR PHYSICS A, 1970, A155 (01) : 33 - &
  • [45] Solutions to quasi-relativistic multi-configurative Hartree-Fock equations in quantum chemistry
    Argaez, C.
    Melgaard, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 384 - 404
  • [46] General Hartree-Fock method and symmetry breaking in quantum dots
    Cavaliere, Fabio
    De Giovannini, Umberto
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (03): : 606 - 609
  • [47] 2-QUANTUM PROCESSES IN COUPLED HARTREE-FOCK APPROXIMATION
    VICTOR, GA
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 91 (574P): : 825 - &
  • [48] HARTREE-FOCK TREATMENT FOR THE ELECTRON-STATES IN THE QUANTUM WIRE
    NAKAMURA, A
    OKIJI, A
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (06) : 1873 - 1876
  • [49] Hartree-Fock approximation of bipolaron state in quantum dots and wires
    Senger, R. T.
    Kozal, B.
    Chatterjee, A.
    Ercelebi, A.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 78 (04): : 525 - 529
  • [50] Dyson's Equations for Quantum Gravity in the Hartree-Fock Approximation
    Hamber, Herbert W.
    Yu, Lu Heng Sunny
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 50