Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree-Fock

被引:70
|
作者
Tamayo-Mendoza, Teresa [1 ]
Kreisbeck, Christoph [1 ]
Lindh, Roland [2 ]
Aspuru-Guzik, Alaprimen [1 ,3 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA
[2] Uppsala Univ, Uppsala Ctr Computat Chem, Dept Chem Angstrom, Theoret Chem Programme,UC3, Box 518, S-75120 Uppsala, Sweden
[3] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
2ND-ORDER PERTURBATION-THEORY; AB-INITIO CALCULATIONS; COUPLED-CLUSTER; ALGORITHMIC DIFFERENTIATION; CONFIGURATION-INTERACTION; SIMULTANEOUS-OPTIMIZATION; GEOMETRY OPTIMIZATION; ORDER DERIVATIVES; EXCITED-STATES; BOND FUNCTIONS;
D O I
10.1021/acscentsci.7b00586
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult, a Hartree-Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.
引用
收藏
页码:559 / 566
页数:8
相关论文
共 50 条
  • [1] The Hartree-Fock method and development of quantum chemistry
    Stepanov, NF
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 1999, 73 (10): : 1552 - 1558
  • [2] QUANTUM CHEMISTRY - APPLICATION OF HARTREE-FOCK METHOD
    ROOS, B
    FISCHERH.I
    KEMISK TIDSKRIFT, 1970, 82 (10): : 12 - &
  • [3] Automatic Differentiation for the Direct Minimization Approach to the Hartree-Fock Method
    Yoshikawa, Naruki
    Sumita, Masato
    JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 126 (45): : 8487 - 8493
  • [4] Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange
    Yanai, T
    Fann, GI
    Gan, ZT
    Harrison, RJ
    Beylkin, G
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (14): : 6680 - 6688
  • [5] VARIATIONAL PRINCIPLE AND EXTENDED HARTREE-FOCK THEORY
    KOBE, DH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (04): : 485 - &
  • [6] VARIATIONAL METHOD FOR EXCITED HARTREE-FOCK ORBITALS
    CHEGLOKOV, EI
    ZELICHENKO, VM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1974, (03): : 65 - 68
  • [7] NEW ALGORITHM FOR HARTREE-FOCK VARIATIONAL EQUATION
    IWASAWA, K
    SAKATA, F
    HASHIMOTO, Y
    TERASAKI, J
    PROGRESS OF THEORETICAL PHYSICS, 1994, 92 (06): : 1119 - 1135
  • [8] FULLY NUMERICAL HARTREE-FOCK METHODS FOR MOLECULES
    LAAKSONEN, L
    PYYKKO, P
    SUNDHOLM, D
    COMPUTER PHYSICS REPORTS, 1986, 4 (05): : 313 - 344
  • [9] Limitations of Hartree-Fock with quantum resources
    Gulania, Sahil
    Whitfield, James Daniel
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (04):
  • [10] Chemistry beyond the Hartree-Fock energy via quantum computed moments
    Jones, Michael A.
    Vallury, Harish J.
    Hill, Charles D.
    Hollenberg, Lloyd C. L.
    SCIENTIFIC REPORTS, 2022, 12 (01)