Graver basis and proximity techniques for block-structured separable convex integer minimization problems

被引:12
|
作者
Hemmecke, Raymond [1 ]
Koeppe, Matthias [2 ]
Weismantel, Robert [3 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] ETH, Inst Operat Res, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
N-fold integer programs; Graver basis; Augmentation algorithm; Proximity; Polynomial-time algorithm; Stochastic multi-commodity flow; Stochastic integer programming; TEST SETS; OPTIMIZATION; DECOMPOSITION; PROGRAMS;
D O I
10.1007/s10107-013-0638-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider -fold -block decomposable integer programs, which simultaneously generalize -fold integer programs and two-stage stochastic integer programs with scenarios. In previous work (Hemmecke et al. in Integer programming and combinatorial optimization. Springer, Berlin, 2010), it was proved that for fixed blocks but variable , these integer programs are polynomial-time solvable for any linear objective. We extend this result to the minimization of separable convex objective functions. Our algorithm combines Graver basis techniques with a proximity result (Hochbaum and Shanthikumar in J. ACM 37:843-862,1990), which allows us to use convex continuous optimization as a subroutine.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [41] Symmetric Separable Convex Resource Allocation Problems with Structured Disjoint Interval Bound Constraints
    Uiterkamp, Martijn H. H. Schoot
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [42] An Inertial Alternating Direction Method of Multipliers for Solving a Two-Block Separable Convex Minimization Problem
    Yang YANG
    Yuchao TANG
    JournalofMathematicalResearchwithApplications, 2021, 41 (02) : 204 - 220
  • [43] On the global and linear convergence of direct extension of ADMM for 3-block separable convex minimization models
    Huijie Sun
    Jinjiang Wang
    Tingquan Deng
    Journal of Inequalities and Applications, 2016
  • [44] On the global and linear convergence of direct extension of ADMM for 3-block separable convex minimization models
    Sun, Huijie
    Wang, Jinjiang
    Deng, Tingquan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [45] Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems
    Cattaruzza, Diego
    Labbe, Martine
    Petris, Matteo
    Roland, Marius
    Schmidt, Martin
    INFORMS JOURNAL ON COMPUTING, 2024, 36 (04) : 1084 - 1107
  • [46] A Dynamical Approach to Two-Block Separable Convex Optimization Problems with Linear Constraints
    Bitterlich, Sandy
    Csetnek, Erno Robert
    Wanka, Gert
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 42 (01) : 1 - 38
  • [47] The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent
    Chen, Caihua
    He, Bingsheng
    Ye, Yinyu
    Yuan, Xiaoming
    MATHEMATICAL PROGRAMMING, 2016, 155 (1-2) : 57 - 79
  • [48] Global Convergence of Unmodified 3-Block ADMM for a Class of Convex Minimization Problems
    Lin, Tianyi
    Ma, Shiqian
    Zhang, Shuzhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 69 - 88
  • [49] The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent
    Caihua Chen
    Bingsheng He
    Yinyu Ye
    Xiaoming Yuan
    Mathematical Programming, 2016, 155 : 57 - 79
  • [50] Global Convergence of Unmodified 3-Block ADMM for a Class of Convex Minimization Problems
    Tianyi Lin
    Shiqian Ma
    Shuzhong Zhang
    Journal of Scientific Computing, 2018, 76 : 69 - 88