Graver basis and proximity techniques for block-structured separable convex integer minimization problems

被引:12
|
作者
Hemmecke, Raymond [1 ]
Koeppe, Matthias [2 ]
Weismantel, Robert [3 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] ETH, Inst Operat Res, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
N-fold integer programs; Graver basis; Augmentation algorithm; Proximity; Polynomial-time algorithm; Stochastic multi-commodity flow; Stochastic integer programming; TEST SETS; OPTIMIZATION; DECOMPOSITION; PROGRAMS;
D O I
10.1007/s10107-013-0638-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider -fold -block decomposable integer programs, which simultaneously generalize -fold integer programs and two-stage stochastic integer programs with scenarios. In previous work (Hemmecke et al. in Integer programming and combinatorial optimization. Springer, Berlin, 2010), it was proved that for fixed blocks but variable , these integer programs are polynomial-time solvable for any linear objective. We extend this result to the minimization of separable convex objective functions. Our algorithm combines Graver basis techniques with a proximity result (Hochbaum and Shanthikumar in J. ACM 37:843-862,1990), which allows us to use convex continuous optimization as a subroutine.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Graver basis and proximity techniques for block-structured separable convex integer minimization problems
    Raymond Hemmecke
    Matthias Köppe
    Robert Weismantel
    Mathematical Programming, 2014, 145 : 1 - 18
  • [2] Tight Lower Bounds for Block-Structured Integer Programs
    Hunkenschroder, Christoph
    Klein, Kim-Manuel
    Koutecky, Martin
    Lassota, Alexandra
    Levin, Asaf
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2024, 2024, 14679 : 224 - 237
  • [3] A colorful Steinitz Lemma with application to block-structured integer programs
    Oertel, Timm
    Paat, Joseph
    Weismantel, Robert
    MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 677 - 702
  • [4] A Customized Augmented Lagrangian Method for Block-Structured Integer Programming
    Wang, Rui
    Zhang, Chuwen
    Pu, Shanwen
    Gao, Jianjun
    Wen, Zaiwen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9439 - 9455
  • [5] A colorful Steinitz Lemma with application to block-structured integer programs
    Timm Oertel
    Joseph Paat
    Robert Weismantel
    Mathematical Programming, 2024, 204 : 677 - 702
  • [6] Parameterized algorithms for block-structured integer programs with large entries
    Cslovjecsek, Jana
    Koutecky, Martin
    Lassota, Alexandra
    Pilipczuk, Michal
    Polak, Adam
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 740 - 751
  • [7] A partially isochronous splitting algorithm for three-block separable convex minimization problems
    Hongjin He
    Liusheng Hou
    Hong-Kun Xu
    Advances in Computational Mathematics, 2018, 44 : 1091 - 1115
  • [8] SOLUTION OF BLOCK-STRUCTURED LEAST-SQUARES PROBLEMS
    CRAWFORD, CR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1980, 70 (08) : 1035 - 1036
  • [9] FPT algorithms for a special block-structured integer program with applications in scheduling
    Chen, Hua
    Chen, Lin
    Zhang, Guochuan
    MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) : 463 - 496
  • [10] REFINED PROXIMITY AND SENSITIVITY RESULTS IN LINEARLY CONSTRAINED CONVEX SEPARABLE INTEGER PROGRAMMING
    BALDICK, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 389 - 407