Smoothness of Minkowski sum and generic rotations

被引:3
|
作者
Belegradek, Igor [1 ]
Jiang, Zixin [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
关键词
Convex body; Minkowski sum; Smoothness; infimal convolution; Sums of Cantor sets; CONVEX-SETS;
D O I
10.1016/j.jmaa.2017.01.088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Can the Minkowski sum of two convex bodies be made smoother by rotating one of them? We construct two C-infinity strictly convex plane bodies such that after any generic rotation (in. the Bake category sense) of one of the summands the Minkowski sum is not C-5. On the other hand, if for one of the bodies the zero set of the Gaussian curvature has countable spherical image, we show that any generic rotation makes their Minkowski sum as smooth as the summands. We also improve and clarify some previous results on smoothness of the Minkowski sum. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1229 / 1244
页数:16
相关论文
共 50 条
  • [21] On the Minkowski distances and products of sum sets
    Roche-Newton, Oliver
    Rudnev, Misha
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (02) : 507 - 526
  • [22] The Minkowski sum of a simple polygon and a segment
    Pustylnik, G
    Sharir, M
    INFORMATION PROCESSING LETTERS, 2003, 85 (04) : 179 - 184
  • [23] Successive radii and Orlicz Minkowski sum
    Fangwei Chen
    Congli Yang
    Miao Luo
    Monatshefte für Mathematik, 2016, 179 : 201 - 219
  • [24] MINKOWSKI SUM OF STRONGLY CONVEX SURFACES
    POLIKANOVA, IV
    SIBERIAN MATHEMATICAL JOURNAL, 1988, 29 (04) : 690 - 693
  • [25] On the Minkowski distances and products of sum sets
    Oliver Roche-Newton
    Misha Rudnev
    Israel Journal of Mathematics, 2015, 209 : 507 - 526
  • [26] Dynamic Minkowski Sum of Convex Shapes
    Behar, Evan
    Lien, Jyh-Ming
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [27] Successive radii and Orlicz Minkowski sum
    Chen, Fangwei
    Yang, Congli
    Luo, Miao
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (02): : 201 - 219
  • [28] Computing the Minkowski sum of monotone polygons
    HernandezBarrera, A
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1997, E80D (02) : 218 - 222
  • [29] The Flag Polynomial of the Minkowski Sum of Simplices
    Geir Agnarsson
    Annals of Combinatorics, 2013, 17 : 401 - 426
  • [30] TWO APPROXIMATE MINKOWSKI SUM ALGORITHMS
    Milenkovic, Victor
    Sacks, Elisha
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (04) : 485 - 509