Smoothness of Minkowski sum and generic rotations

被引:3
|
作者
Belegradek, Igor [1 ]
Jiang, Zixin [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
关键词
Convex body; Minkowski sum; Smoothness; infimal convolution; Sums of Cantor sets; CONVEX-SETS;
D O I
10.1016/j.jmaa.2017.01.088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Can the Minkowski sum of two convex bodies be made smoother by rotating one of them? We construct two C-infinity strictly convex plane bodies such that after any generic rotation (in. the Bake category sense) of one of the summands the Minkowski sum is not C-5. On the other hand, if for one of the bodies the zero set of the Gaussian curvature has countable spherical image, we show that any generic rotation makes their Minkowski sum as smooth as the summands. We also improve and clarify some previous results on smoothness of the Minkowski sum. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1229 / 1244
页数:16
相关论文
共 50 条
  • [1] A note on the smoothness of the Minkowski function
    Haridas, Pranav
    Janardhanan, Jaikrishnan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (04) : 541 - 545
  • [2] SMOOTHNESS OF SOLUTION TO MINKOWSKI PROBLEM
    SHEFEL, SZ
    SIBERIAN MATHEMATICAL JOURNAL, 1977, 18 (02) : 338 - 340
  • [3] SMOOTHNESS OF CONJUGACIES OF DIFFEOMORPHISMS OF THE CIRCLE WITH ROTATIONS
    SINAI, YG
    KHANIN, KM
    RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (01) : 69 - 99
  • [4] MINKOWSKI SUM SELECTION AND FINDING
    Luo, Cheng-Wei
    Liu, Hsiao-Fei
    Chen, Peng-An
    Chao, Kun-Mao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2011, 21 (03) : 283 - 311
  • [5] Minkowski sum of a parallelotope and a segment
    Grishukhin, V. P.
    SBORNIK MATHEMATICS, 2006, 197 (9-10) : 1417 - 1433
  • [6] Computing the Minkowski Sum of Prisms
    D. Pallaschke
    J. Rosenmüller
    Journal of Global Optimization, 2006, 35 : 321 - 341
  • [7] On the volume of the Minkowski sum of zonoids
    Fradelizi, Matthieu
    Madiman, Mokshay
    Meyer, Mathieu
    Zvavitch, Artem
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (03)
  • [8] ON THE MINKOWSKI SUM OF TWO CURVES
    Chang, Alamn
    REAL ANALYSIS EXCHANGE, 2018, 43 (01) : 221 - 222
  • [9] Minkowski Sum Selection and Finding
    Luo, Cheng-Wei
    Liu, Hsiao-Fei
    Chen, Peng-An
    Chao, Kun-Mao
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 5369 : 460 - 471
  • [10] Computing the Minkowski sum of prisms
    Pallaschke, D.
    Rosenmuller, J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (02) : 321 - 341