A variational approach for standing waves of FitzHugh-Nagumo type systems

被引:22
|
作者
Chen, Chao-Nien [1 ]
Tanaka, Kazunaga [2 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
[2] Waseda Univ, Sch Sci & Engn, Dept Math, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
SCALAR FIELD-EQUATIONS; EXISTENCE; NORM;
D O I
10.1016/j.jde.2014.03.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of radially symmetric solutions of FitzHugh-Nagumo type elliptic systems in R-N (N >= 2): -Delta u=g(u)-v in R-N, -d Delta v+gamma v = u in R-N, (*) (u(x),v(x))-> (0,0) as vertical bar x vertical bar -> infinity. We utilize a truncation technique and apply minimax arguments to the corresponding strongly indefinite functional I-gamma (u,v) = 1/2 integral(RN) vertical bar del u vertical bar(2) - d vertical bar del v vertical bar(2) dx - integral(RN)G(u) + gamma/2 v(2) -uv dx, defined on H-r(1)(R-N) x H-r(1)(R-N), to find positive and possibly sign-changing solutions of (*). In particular, we overcome difficulty related to Palais Smale condition via our new scaling argument. When g(xi) = xi(1-xi)(xi-alpha), alpha is an element of (0, 1/2), we improve the existence result of Reinecke Sweers [23]. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 144
页数:36
相关论文
共 50 条
  • [31] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Danielle Hilhorst
    Piotr Rybka
    Journal of Statistical Physics, 2010, 138 : 291 - 304
  • [32] Stationary probability distributions for FitzHugh-Nagumo systems
    Kostur, M
    Sailer, X
    Schimansky-Geier, L
    FLUCTUATION AND NOISE LETTERS, 2003, 3 (02): : L155 - L166
  • [33] On the dynamical behaviour of FitzHugh-Nagumo systems: Revisited
    Ringkvist, M.
    Zhou, Y.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2667 - 2687
  • [34] Traveling waves for the FitzHugh-Nagumo system on an infinite channel
    Chen, Chao-Nien
    Chen, Chiun-Chuan
    Huang, Chih-Chiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 3010 - 3041
  • [35] CHAOTIC MEANDER OF SPIRAL WAVES IN THE FITZHUGH-NAGUMO SYSTEM
    ZHANG, H
    HOLDEN, AV
    CHAOS SOLITONS & FRACTALS, 1995, 5 (3-4) : 661 - 670
  • [36] Oscillatory pulses in FitzHugh-Nagumo type systems with cross-diffusion
    Zemskov, E. P.
    Epstein, I. R.
    Muntean, A.
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2011, 28 (02): : 217 - 226
  • [37] Lyapunov functionals and stability for FitzHugh-Nagumo systems
    Freitas, P
    Rocha, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 208 - 227
  • [38] Synchronization of coupled chaotic FitzHugh-Nagumo systems
    Aqil, Muhammad
    Hong, Keum-Shik
    Jeong, Myung-Yung
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1615 - 1627
  • [39] On a Variational Problem Arising from the Three-component FitzHugh-Nagumo Type Reaction-Diffusion Systems
    Kajiwara, Takashi
    Kurata, Kazuhiro
    TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (01) : 131 - 174
  • [40] An inverse problem for a generalized FitzHugh-Nagumo type system
    Cardoulis, Laure
    Cristofol, Michel
    APPLICABLE ANALYSIS, 2024, 103 (11) : 1990 - 2002