Design of HL-2A plasma position predictive model based on deep learning

被引:7
|
作者
Yang, Bin [1 ,2 ,3 ]
Liu, Zhenxing [1 ]
Song, Xianmin [3 ]
Li, Xiangwen [2 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan, Peoples R China
[2] Chengdu Univ Technol, Engn & Tech Coll, Dept Automat Engn, Leshan, Peoples R China
[3] Southwestern Inst Phys, Chengdu, Peoples R China
关键词
HL-2A; deep learning; long short-term memory network; hybrid neural network; prediction model; SYSTEM-IDENTIFICATION; RESPONSE MODEL; DYNAMICS;
D O I
10.1088/1361-6587/abc397
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In tokamak discharge experiments, the plasma position prediction model's research is to understand the law of plasma motion and verify the correctness of the plasma position controller design. Although Maxwell equations can completely describe plasma movement, obtaining an accurate physical model for predicting plasma behavior is still challenging. This paper describes a deep neural network model that can accurately predict the HL-2A plasma position. That is a hybrid neural network model based on a long short-term memory network. We introduce the topology, training parameter setting, and prediction result analysis of this model in detail. The test results show that a trained deep neural network model has high prediction accuracy for plasma vertical and horizontal displacements.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Study of Plasma MHD Equilibrium in HL-2A Tokamak
    何宏达
    张锦华
    董家齐
    李强
    Plasma Science and Technology, 2006, (04) : 397 - 401
  • [32] Modeling and control of plasma horizontal displacement for HL-2A tokamak based on LSTM
    Fu, Xianfei
    Yang, Bin
    Wang, Shiqing
    FUSION ENGINEERING AND DESIGN, 2021, 162
  • [33] Experimental Observation of the Edge and Divertor Plasma in HL-2A
    洪文玉
    严龙文
    钱俊
    李强
    潘宇东
    罗翠文
    徐征宇
    潘莉
    杨青巍
    黄渊
    Plasma Science and Technology, 2006, (06) : 627 - 632
  • [34] Experimental observation of the edge and divertor plasma in HL-2A
    Hong Wenyu
    Yan Longwen
    Qian Jun
    Li Qiang
    Pan Yudong
    Luo Cuiwen
    Xu Zhengyu
    Pan Li
    Yang Qingwei
    Huang Yuan
    PLASMA SCIENCE & TECHNOLOGY, 2006, 8 (06) : 627 - 632
  • [35] Deep Learning Based Predictive Beamforming Design
    Zhang, Juping
    Zheng, Gan
    Zhang, Yangyishi
    Krikidis, Ioannis
    Wong, Kai-Kit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (06) : 8122 - 8127
  • [36] Design of phase contrast imaging on the HL-2A tokamak
    Gong, S. B.
    Yu, Y.
    Xu, M.
    Jiang, W.
    Zhong, W. L.
    Shi, Z. B.
    Wang, H. J.
    Wu, Y. F.
    Yuan, B. D.
    Lan, T.
    Ye, M. Y.
    Duan, X. R.
    FUSION ENGINEERING AND DESIGN, 2017, 123 : 802 - 806
  • [37] Characterization of plasma current quench during disruptions at HL-2A
    Zhu, Jinxia
    Zhang, Yipo
    Dong, Yunbo
    PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (05)
  • [38] Modeling of HL-2A tokamak edge plasma with auxiliary heating
    Cheng, Fayin
    Li, Li
    Hou, Binglin
    Jisuan Wuli/Chinese Journal of Computational Physics, 2008, 25 (03): : 284 - 288
  • [39] Acceleration of Dust Particle in SOL/Divertor Plasma of HL-2A
    Tomita, Yukihiro
    Kawamura, Gakushi
    Pan Yudong
    Zhou Yan
    Yan Longwen
    PLASMA SCIENCE & TECHNOLOGY, 2009, 11 (04) : 427 - 429
  • [40] Characterization of plasma current quench during disruptions at HL-2A
    竹锦霞
    张轶泼
    董云波
    HL-2A Team
    PlasmaScienceandTechnology, 2017, 19 (05) : 5 - 9