Design of HL-2A plasma position predictive model based on deep learning

被引:7
|
作者
Yang, Bin [1 ,2 ,3 ]
Liu, Zhenxing [1 ]
Song, Xianmin [3 ]
Li, Xiangwen [2 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan, Peoples R China
[2] Chengdu Univ Technol, Engn & Tech Coll, Dept Automat Engn, Leshan, Peoples R China
[3] Southwestern Inst Phys, Chengdu, Peoples R China
关键词
HL-2A; deep learning; long short-term memory network; hybrid neural network; prediction model; SYSTEM-IDENTIFICATION; RESPONSE MODEL; DYNAMICS;
D O I
10.1088/1361-6587/abc397
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In tokamak discharge experiments, the plasma position prediction model's research is to understand the law of plasma motion and verify the correctness of the plasma position controller design. Although Maxwell equations can completely describe plasma movement, obtaining an accurate physical model for predicting plasma behavior is still challenging. This paper describes a deep neural network model that can accurately predict the HL-2A plasma position. That is a hybrid neural network model based on a long short-term memory network. We introduce the topology, training parameter setting, and prediction result analysis of this model in detail. The test results show that a trained deep neural network model has high prediction accuracy for plasma vertical and horizontal displacements.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Modeling of the HL-2A plasma vertical displacement control system based on deep learning and its controller design
    Yang, Bin
    Liu, Zhenxing
    Song, Xianmin
    Li, Xiangwen
    Li, Yan
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (07)
  • [2] System design of a reference model adaptive control for radial plasma position on HL-2A tokamak
    Mao, SY
    Yuan, B
    Li, Q
    PLASMA SCIENCE & TECHNOLOGY, 2004, 6 (03) : 2317 - 2321
  • [3] System Design of a Reference Model Adaptive Control for Radial Plasma Position on HL-2A Tokamak
    毛苏英
    袁保山
    李强
    Plasma Science & Technology, 2004, (03) : 2317 - 2321
  • [4] Identification of Plasma Boundary and Position for HL-2A Tokamak
    王中天
    毛国平
    杨青巍
    张锦华
    高喆
    何也熙
    Plasma Science & Technology, 2005, (04) : 2905 - 2907
  • [5] Identification of plasma boundary and position for HL-2A tokamak
    Wang, ZT
    Mao, GP
    Yang, QW
    Zhang, JH
    Gao, Z
    He, YX
    PLASMA SCIENCE & TECHNOLOGY, 2005, 7 (04) : 2905 - 2907
  • [6] Real-time disruption prediction in the plasma control system of HL-2A based on deep learning
    Yang, Zongyu
    Xia, Fan
    Song, Xianming
    Gao, Zhe
    Li, Yixuan
    Gong, Xinwen
    Dong, Yunbo
    Zhang, Yipo
    Chen, Chengyuan
    Luo, Cuiwen
    Li, Bo
    Zhu, Xiaobo
    Ji, Xiaoquan
    Li, Yonggao
    Liu, Liang
    Gao, Jinming
    Liu, Yuhang
    FUSION ENGINEERING AND DESIGN, 2022, 182
  • [7] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
    杨宗谕
    刘宇航
    朱晓博
    陈正威
    夏凡
    钟武律
    高喆
    张轶泼
    刘仪
    Chinese Physics B, 2023, (07) : 14 - 24
  • [8] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
    Yang, Zongyu
    Liu, Yuhang
    Zhu, Xiaobo
    Chen, Zhengwei
    Xia, Fan
    Zhong, Wulyu
    Gao, Zhe
    Zhang, Yipo
    Liu, Yi
    CHINESE PHYSICS B, 2023, 32 (07)
  • [9] Plasma current tomography for HL-2A based on Bayesian inference
    Liu, Zijie
    Wang, Tianbo
    Wu, Muquan
    Luo, Zhengping
    Wang, Shuo
    Sun, Tengfei
    Xiao, Bingjia
    Li, Jiangang
    PLASMA SCIENCE & TECHNOLOGY, 2024, 26 (05)
  • [10] Plasma current tomography for HL-2A based on Bayesian inference
    刘自结
    王天博
    吴木泉
    罗正平
    王硕
    孙腾飞
    肖炳甲
    李建刚
    Plasma Science and Technology, 2024, (05) : 170 - 178