INEQUALITY CHAINS FOR WILKER, HUYGENS AND LAZAREVIC TYPE INEQUALITIES

被引:16
|
作者
Chen, Chao-Ping [1 ]
Sandor, Jozsef [2 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454003, Henan Province, Peoples R China
[2] Univ Babes Bolyai, Dept Math, Cluj Napoca 400084, Romania
来源
关键词
Inequalities; trigonometric functions; hyperbolic functions; CUSA-HUYGENS; REFINEMENT;
D O I
10.7153/jmi-08-02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We offer various refinements of inequalities related to the Wilker, Huygens, or Lazarevic type inequalities for trigonometric and hyperbolic functions.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [21] WILKER AND HUYGENS-TYPE INEQUALITIES FOR SOME BIVARIATE MEANS WITH APPLICATIONS TO ELEMENTARY FUNCTIONS
    Neuman, Edward
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 161 - 166
  • [22] New bounds of Wilker- and Huygens-type inequalities for inverse trigonometric functions
    Xiao-Diao Chen
    Hui Wang
    Kang Yang
    Jin Xie
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [23] New bounds of Wilker- and Huygens-type inequalities for inverse trigonometric functions
    Chen, Xiao-Diao
    Wang, Hui
    Yang, Kang
    Xie, Jin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (01)
  • [24] ON SOME INEQUALITIES INVOLVING TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS WITH EMPHASIS ON THE CUSA-HUYGENS, WILKER, AND HUYGENS INEQUALITIES
    Neuman, Edward
    Sandor, Jozsef
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 715 - 723
  • [25] THE RELATIONSHIP BETWEEN HUYGENS' AND WILKER'S INEQUALITIES AND FURTHER REMARKS
    Chen, Chao-Ping
    Mortici, Cristinel
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (01) : 92 - 100
  • [26] FOURIER SERIFS METHOD RELATED TO WILKER - CUSA - HUYGENS INEQUALITIES
    Bercu, Gabriel
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1091 - 1098
  • [27] Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions
    Chen, Chao-Ping
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (12) : 865 - 873
  • [28] On Wilker-type inequalities
    Zhu, Ling
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (04): : 727 - 731
  • [29] Sharpened versions of Mitrinovic-Adamovic, Lazarevic and Wilker's inequalities for trigonometric and hyperbolic functions
    Wu, Shan-He
    Li, Shu-Guang
    Bencze, Mihaly
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2688 - 2696
  • [30] THE SHARP INEQUALITIES RELATED TO WILKER TYPE
    Yang, Zhen-Hang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03): : 1015 - 1026