A particle filter algorithm for the multi-target probability hypothesis density

被引:1
|
作者
Shoenfeld, PS [1 ]
机构
[1] Sci Applicat Int Corp, Mclean, VA 22102 USA
关键词
Bayesian; probability hypothesis density; particle filter;
D O I
10.1117/12.544162
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This algorithm provides a method for non-linear multiple target tracking that does not require association of targets. This is done by recursive Bayesian estimation of the density corresponding to the expected number of targets in each measurable set-the Probability Hypothesis Density (PHD). Efficient Monte Carlo estimation is achieved by giving this density the role of the single target state probability density in the conventional particle filter. The problem setup for our algorithm includes (1) a bounded region of interest containing a changing number of targets, (2) independent observations each accompanied by estimates of false alarm probability and the probability that the observation represents something new, (3) an estimate of the Poisson rate at which targets leave the region of interest. The prototype application of this filter is to aid in short range acoustic contact detection and alertment for submarine systems. The filter uses as input passive acoustic detections from a fully automated process, which generates a large numbers of valid and false detections. The filter does not require specific target classification. Although the mathematical theory of Probability Hypothesis Density estimation has been developed in the context of modem Random Set Theory, our development relies on elementary methods instead. The principal tools are conditioning on the expected number of targets and identification of the PHD with the density for the proposition that at least one target is present.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [41] Multi-target Track Extraction Method Based on Gaussian Mixture Probability Hypothesis Density Filter
    Zhu, Chuangu
    Zhou, Qingrui
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3141 - 3146
  • [42] Adaptive probability hypothesis density filter for multi-target tracking with unknown measurement noise statistics
    Xu, Weijun
    MEASUREMENT & CONTROL, 2021, 54 (3-4): : 279 - 291
  • [43] The Application of Particle Filter Algorithm in Multi-target Tracking
    Liu, Jiaomin
    Meng, Junying
    Wang, Juan
    Han, Ming
    ADVANCES IN MULTIMEDIA, SOFTWARE ENGINEERING AND COMPUTING, VOL 2, 2011, 129 : 419 - 424
  • [44] Multi-sensor multi-target tracking with trajectory probability hypothesis density
    Wang Z.
    Liu Y.
    Yang W.
    Lu Z.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (02): : 526 - 533
  • [45] Multiple hypotheses detection with Gaussian mixture probability hypothesis density filter for multi-target trajectory tracking
    Huang Z.-B.
    Sun S.-Y.
    Wu J.-K.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2010, 32 (06): : 1289 - 1294
  • [46] The Modified Probability Hypothesis Density Filter With Adaptive Birth Intensity Estimation for Multi-Target Tracking in Low Detection Probability
    Zhu, Qian
    Li, Tao
    Pan, Jiameng
    Bao, Qinglong
    IEEE ACCESS, 2020, 8 : 43690 - 43710
  • [47] Improved probability hypothesis density filter for multi-target tracking of non-cooperative bistatic radar
    Wang, Sen
    Bao, Qinglong
    Pan, Jiameng
    IET RADAR SONAR AND NAVIGATION, 2022, 16 (03): : 426 - 436
  • [48] Multi-target pig tracking algorithm based on joint probability data association and particle filter
    Sun, Longqing
    Li, Yiyang
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2021, 14 (04) : 199 - 207
  • [49] Improved multi-target tracking using probability hypothesis density smoothing
    Nandakumaran, N.
    Punithakumar, K.
    Kirubarajan, T.
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2007, 2007, 6699
  • [50] Time-matching extended target probability hypothesis density filter for multi-target tracking of high resolution radar
    Jiang, Defu
    Liu, Ming
    Gao, Yiyue
    Gao, Yang
    SIGNAL PROCESSING, 2019, 157 : 151 - 160