Some Ramanujan-type circular summation formulas

被引:0
|
作者
Ge, Ji-Ke [1 ]
Luo, Qiu-Ming [2 ]
机构
[1] Chongqing Univ Sci & Technol, Sch Intelligent Technol & Engn, Chongqing Higher Educ Mega Ctr, Huxi Campus, Chongqing 401331, Peoples R China
[2] Chongqing Normal Univ, Dept Math, Chongqing Higher Educ Mega Ctr, Huxi Campus, Chongqing 401331, Peoples R China
关键词
Elliptic functions; Ramanujan-type circular summation; Theta functions; Theta function identities; 11F27; 11F20; 33E05; THETA-FUNCTIONS; POWERS; IDENTITY;
D O I
10.1186/s13662-020-03115-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give two Ramanujan-type circular summation formulas by applying the way of elliptic functions and the properties of theta functions. As applications, we obtain the corresponding imaginary transformation formulas for Ramanujan-type circular summations and some theta function identities.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Ramanujan-type congruences for certain generating functions
    Shi-Chao Chen
    Lithuanian Mathematical Journal, 2013, 53 : 381 - 390
  • [42] Ramanujan-type congruences for certain generating functions
    Chen, Shi-Chao
    LITHUANIAN MATHEMATICAL JOURNAL, 2013, 53 (04) : 381 - 390
  • [43] Finding Modular Functions for Ramanujan-Type Identities
    Chen, William Y. C.
    Du, Julia Q. D.
    Zhao, Jack C. D.
    ANNALS OF COMBINATORICS, 2019, 23 (3-4) : 613 - 657
  • [44] About a new kind of Ramanujan-type series
    Guillera, J
    EXPERIMENTAL MATHEMATICS, 2003, 12 (04) : 507 - 510
  • [45] Eisenstein series and Ramanujan-type series for 1/π
    Nayandeep Deka Baruah
    Bruce C. Berndt
    The Ramanujan Journal, 2010, 23 : 17 - 44
  • [46] A new extension of a "divergent" Ramanujan-type supercongruence
    Cao, Jian
    Guo, Victor J. W.
    Yu, Xiao
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (01) : 122 - 132
  • [47] A Matrix form of Ramanujan-type series for 1/π
    Guillera, Jesus
    GEMS IN EXPERIMENTAL MATHEMATICS, 2010, 517 : 189 - +
  • [48] Ramanujan-type congruences for overpartitions modulo 16
    William Y. C. Chen
    Qing-Hu Hou
    Lisa H. Sun
    Li Zhang
    The Ramanujan Journal, 2016, 40 : 311 - 322
  • [49] On some summation formulas
    Kim, Taekyun
    Kim, Dae San
    Lee, Hyunseok
    Kwon, Jongkyum
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 1 - 7
  • [50] ON SOME SUMMATION FORMULAS
    ARHIPOV, GI
    CHUBARIKOV, VN
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1987, (05): : 29 - 32