Numerical modelling and dynamic response analysis of a 10 MW semi-submersible floating offshore wind turbine subjected to ship collision loads

被引:19
|
作者
Yu, Zhaolong [1 ,2 ]
Amdahl, Jorgen [1 ,2 ]
Rypestol, Martin [1 ,2 ]
Cheng, Zhengshun [3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Marine Technol, Trondheim, Norway
[2] Norwegian Univ Sci & Technol NTNU, Ctr Autonomous Marine Operat & Syst AMOS, Trondheim, Norway
[3] Shanghai Jiao Tong Univ, Dept Naval Architecture Civil & Ocean Engn, Shanghai, Peoples R China
关键词
Ship collision; Floating offshore wind turbine; OO-STAR floater; Energy absorption; Global response;
D O I
10.1016/j.renene.2021.12.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The number of installed offshore wind turbines is continuously growing worldwide in recent years. Offshore wind farms are generally located near the coast close to traffic lanes and are exposed to the risk of collisions from visiting and passing ships. Potential consequences of collisions may vary from local structural damage to the detachment of turbine nacelles and rotors, and even tower collapse and capsizing of the turbine platform, causing significant economic loss and fatalities.This paper investigates ship collision responses of a semi-submersible floating offshore wind turbine (FOWT), i.e. the OO-STAR floater with the DTU 10 MW blades, using the nonlinear finite element code USFOS. The OO-STAR floater is made of post-tensioned concrete designed by Dr. techn. Olav Olsen. The striking ships are selected to be a modern supply vessel of 7500 tons and a shuttle tanker of 150,000 tons, representing respectively service/coastal merchant vessels and large passing vessels. Modelling of the FOWT in USFOS is described in detail including the OO-STAR floater, the DTU 10 MW turbine blade, the turbine tower, and the mooring system. The modelled hydrodynamic loads include buoyancy loads and motion induced radiation loads using the Morrison equation. The effects of external waves and currents are assumed to be small and ignored in all directions. Eigenmode analysis of the turbine model is performed to verify the established model.Global collision response analyses of the FOWT were performed in both parked and operating con-ditions. The ship resistance is modelled as nonlinear springs in USFOS containing force displacement curves simulated in LS-DYNA. In operating conditions, wind loads are introduced including wind thrust loads and wind induced torque to rotate the turbine blades. The changes of upstream wind speeds and rotor/wake interactions during collisions are neglected. The results are discussed with respect to energy absorption of the ship and the FOWT, and structural responses of the FOWT including global motions, nacelle accelerations, tower clearance, tower vibrations, and responses of the mooring system.(c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:677 / 699
页数:23
相关论文
共 50 条
  • [11] Numerical Analysis and Modeling of a Semi-Submersible Floating Wind Turbine Platform with Large Amplitude Motions Subjected to Extreme Wind and Wave Loads
    Lyu, Weishan
    Falzarano, Jeffrey
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (02)
  • [12] Dynamic Response Analysis of Semi-Submersible Floating Wind Turbine with Different Wave Conditions
    Jiang M.
    Qiao G.
    Chen J.
    Huang X.
    Zhang L.
    Wen Y.
    Zhang Y.
    Energy Engineering: Journal of the Association of Energy Engineering, 2023, 120 (11): : 2517 - 2529
  • [13] A study of the numerical simulation on the loads of a commercial 6 MW semi-submersible wind turbine
    Fang L.
    Zhai E.
    Li R.
    Ning Q.
    Zhao B.
    Li Y.
    Zhou Y.
    Zhang L.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2024, 45 (01): : 17 - 24and128
  • [14] Experimental study on dynamic characteristic of a new semi-submersible floating offshore wind turbine
    Zhao, Zhanhua
    Fan, Yali
    Kuang, Xiaofeng
    Zhou, Shuni
    Zhang, Kai
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (20): : 252 - 257
  • [15] Hydrodynamic characteristics of a 15 MW semi-submersible floating offshore wind turbine in freak waves
    Zhong, Wenjie
    Zhang, Xiaoming
    Wan, Decheng
    OCEAN ENGINEERING, 2023, 283
  • [16] Effect of Mooring Parameters on Dynamic Responses of a Semi-Submersible Floating Offshore Wind Turbine
    Liu, Baolong
    Yu, Jianxing
    SUSTAINABILITY, 2022, 14 (21)
  • [17] DYNAMIC RESPONSE ANALYSIS OF A NOVEL SEMI-SUBMERSIBLE FLOATING OFFSHORE WIND TURBINE BASED ON DIFFERENT MOORING SYSTEM DESIGNS
    Zhao, Zhixin
    Wang, Wenhua
    Shi, Wei
    Li, Xin
    Wang, Bin
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [18] NUMERICAL AND EXPERIMENTAL WIND TUNNEL ANALYSIS OF AERODYNAMIC EFFECTS ON A SEMI-SUBMERSIBLE FLOATING WIND TURBINE RESPONSE
    Fontanella, Alessandro
    Bayati, Ilmas
    Taruffi, Federico
    Facchinetti, Alan
    Belloli, Marco
    PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 10, 2019,
  • [19] Dynamic Response and Mooring Fracture Performance Analysis of a Semi-Submersible Floating Offshore Wind Turbine under Freak Waves
    Liu, Baolong
    Yu, Jianxing
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (08)
  • [20] Numerical modelling and dynamic response analysis of dockside installation of a semi-submersible floating wind turbine considering multi-stage typhoon
    Hu, Zhirong
    Jin, Jingzhe
    Chen, Peng
    Cheng, Zhengshun
    Gao, Zhen
    OCEAN ENGINEERING, 2025, 325