Robust estimate of dynamo thresholds in the von Karman sodium experiment using the extreme value theory

被引:6
|
作者
Faranda, Davide [1 ]
Bourgoin, Mickael [2 ,3 ,4 ,5 ]
Miralles, Sophie [2 ,3 ]
Odier, Philippe [2 ,3 ]
Pinton, Jean-Francois [2 ,3 ]
Plihon, Nicolas [2 ,3 ]
Daviaud, Francois [1 ]
Dubrulle, Berengere [1 ]
机构
[1] CEA Saclay, CNRS, DSM, Serv Phys Etat Condense,Lab SPHYNX,URA 2464, F-91191 Gif Sur Yvette, France
[2] Ecole Normale Super Lyon, Phys Lab, CNRS, F-69364 Lyon 07, France
[3] Univ Lyon, F-69364 Lyon 07, France
[4] CNRS, Lab Ecoulements Geophys & Ind, F-38041 Grenoble 9, France
[5] Univ Grenoble 1, F-38041 Grenoble 9, France
来源
NEW JOURNAL OF PHYSICS | 2014年 / 16卷
关键词
extreme value theory; turbulent dynamo; early warnings; critical transitions; SYSTEMS; CONVERGENCE; FLOW;
D O I
10.1088/1367-2630/16/8/083001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply a new threshold detection method based on the extreme value theory (EVT) to the von Karman sodium (VKS) experiment data. The VKS experiment is a successful attempt to get a dynamo magnetic field in a laboratory liquid-metal experiment. We first show that the dynamo threshold is associated with a change of the probability density function of the extreme values of the magnetic field. This method does not require the measurement of response functions from applied external perturbations and thus provides a simple threshold estimate. We apply our method to different configurations in the VKS experiment, showing that it yields a robust indication of the dynamo threshold as well as evidence of hysteretic behaviors. Moreover, for the experimental configurations in which a dynamo transition is not observed, the method provides a way to extrapolate an interval of possible threshold values.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Independent test assessment using the extreme value distribution theory
    Marcio Almeida
    Lucy Blondell
    Juan M. Peralta
    Jack W. Kent
    Goo Jun
    Tanya M. Teslovich
    Christian Fuchsberger
    Andrew R. Wood
    Alisa K. Manning
    Timothy M. Frayling
    Pablo E. Cingolani
    Robert Sladek
    Thomas D. Dyer
    Goncalo Abecasis
    Ravindranath Duggirala
    John Blangero
    BMC Proceedings, 10 (Suppl 7)
  • [42] Research on hardware fault distribution using extreme value theory
    Zuo, D. (zuodc@hit.edu.cn), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (10):
  • [43] Maximum Environmental Electric Field Using Extreme Value Theory
    Audone, Bruno
    Colombo, Roberto
    PROCEEDINGS OF THE 2016 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY - EMC EUROPE, 2016, : 100 - 105
  • [44] Validation of Collision Frequency Estimation Using Extreme Value Theory
    Asljung, Daniel
    Nilsson, Jonas
    Fredriksson, Jonas
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [45] Extreme Value Theory-Based Robust Minimum-Power Precoding for URLLC
    Perez, Dian Echevarria
    Lopez, Onel L. Alcaraz
    Alves, Hirley
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 12844 - 12856
  • [46] Empirical Analysis of Value-at-Risk Estimation Methods Using Extreme Value Theory
    Zhao Yuanrui & Tian Hongwei School of Management
    JournalofSystemsEngineeringandElectronics, 2001, (01) : 13 - 21
  • [47] Empirical analysis of value-at-risk estimation methods using extreme value theory
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2000, 20 (10): : 27 - 35
  • [48] Empirical analysis of value-at-risk estimation methods using extreme value theory
    Zhan, Y.
    Tian, H.
    Journal of Systems Engineering and Electronics, 2001, 12 (01) : 13 - 21
  • [49] Operational risk quantification using extreme value theory and copulas: from theory to practice
    Gourier, Elise
    Farkas, Walter
    Abbate, Donato
    JOURNAL OF OPERATIONAL RISK, 2009, 4 (03): : 3 - 26
  • [50] Assessment of historical and projected changes in extreme temperatures of Balochistan, Pakistan using extreme value theory
    Naeem, Darakshan
    Aziz, Rizwan
    Awais, Muhammad
    Ahmad, Sajid Rashid
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (04)