Automated high-throughput Wannierisation

被引:50
|
作者
Vitale, Valerio [1 ,2 ,3 ,4 ]
Pizzi, Giovanni [5 ,6 ]
Marrazzo, Antimo [5 ,6 ]
Yates, Jonathan R. [7 ]
Marzari, Nicola [5 ,6 ]
Mostofi, Arash A. [2 ,3 ,4 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, 19 JJ Thomson Ave, Cambridge, England
[2] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Imperial Coll London, Thomas Young Ctr Theory & Simulat Mat, London SW7 2AZ, England
[5] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, Lausanne, Switzerland
[6] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, Lausanne, Switzerland
[7] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
瑞士国家科学基金会; 欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
DECAY PROPERTIES; PSEUDOPOTENTIALS; WANNIER90; ORBITALS; SYSTEMS; TOOL;
D O I
10.1038/s41524-020-0312-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Maximally-localised Wannier functions (MLWFs) are routinely used to compute from first-principles advanced materials properties that require very dense Brillouin zone integration and to build accurate tight-binding models for scale-bridging simulations. At the same time, high-throughput (HT) computational materials design is an emergent field that promises to accelerate reliable and cost-effective design and optimisation of new materials with target properties. The use of MLWFs in HT workflows has been hampered by the fact that generating MLWFs automatically and robustly without any user intervention and for arbitrary materials is, in general, very challenging. We address this problem directly by proposing a procedure for automatically generating MLWFs for HT frameworks. Our approach is based on the selected columns of the density matrix method and we present the details of its implementation in an AiiDA workflow. We apply our approach to a dataset of 200 bulk crystalline materials that span a wide structural and chemical space. We assess the quality of our MLWFs in terms of the accuracy of the band-structure interpolation that they provide as compared to the band-structure obtained via full first-principles calculations. Finally, we provide a downloadable virtual machine that can be used to reproduce the results of this paper, including all first-principles and atomistic simulations as well as the computational workflows.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Automated high-throughput Wannierisation
    Valerio Vitale
    Giovanni Pizzi
    Antimo Marrazzo
    Jonathan R. Yates
    Nicola Marzari
    Arash A. Mostofi
    npj Computational Materials, 6
  • [2] Automated equipment for high-throughput experimentation
    Brändli, C
    Maiwald, P
    Schröer, J
    CHIMIA, 2003, 57 (05) : 284 - 289
  • [3] Automated ATR for High-Throughput Laboratories
    Briggs, Jenni L.
    Sykora, Lorenz
    SPECTROSCOPY, 2018, 33 (09) : 52 - 52
  • [4] Automated high-throughput generation of droplets
    Guzowski, Jan
    Korczyk, Piotr M.
    Jakiela, Slawomir
    Garstecki, Piotr
    LAB ON A CHIP, 2011, 11 (21) : 3593 - 3595
  • [5] Automated, high-throughput photonic packaging
    Barwicz, Tymon
    Lichoulas, Ted W.
    Taira, Yoichi
    Martin, Yves
    Takenobu, Shotaro
    Janta-Polczynski, Alexander
    Numata, Hidetoshi
    Kimbrell, Eddie L.
    Nah, Jae-Woong
    Peng, Bo
    Childers, Darrell
    Leidy, Robert
    Khater, Marwan
    Kamlapurkar, Swetha
    Cyr, Elaine
    Engelmann, Sebastian
    Fortier, Paul
    Boyer, Nicolas
    OPTICAL FIBER TECHNOLOGY, 2018, 44 : 24 - 35
  • [6] Opentrons for automated and high-throughput viscometry
    Soh, Beatrice W.
    Chitre, Aniket
    Tan, Shu Zheng
    Wang, Yuhan
    Yi, Yinqi
    Soh, Wendy
    Hippalgaonkar, Kedar
    Wilson, D. Ian
    DIGITAL DISCOVERY, 2025, 4 (03): : 711 - 722
  • [7] High-throughput automated gDNA extraction
    Roby, K
    Cu, M
    Fawcett, J
    GENETIC ENGINEERING NEWS, 2002, 22 (18): : 34 - +
  • [8] An Automated Infrastructure to Support High-Throughput Bioinformatics
    Cuccuru, Gianmauro
    Leo, Simone
    Lianas, Luca
    Muggiri, Michele
    Pinna, Andrea
    Pireddu, Luca
    Uva, Paolo
    Angius, Andrea
    Fotia, Giorgio
    Zanetti, Gianluigi
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 600 - 607
  • [9] High-Throughput and Automated Anion Transport Assays
    Yang, Kylie
    Lee, Lana C.
    Kotak, Hiral A.
    Morton, Evelyn R.
    Chee, Soo Mei
    Nguyen, Duy P. M.
    Keskkula, Alvaro
    Haynes, Cally J. E.
    CHEMISTRY-METHODS, 2025,
  • [10] Automated high-throughput DNA synthesis and assembly
    Ma, Yuxin
    Zhang, Zhaoyang
    Jia, Bin
    Yuan, Yingjin
    HELIYON, 2024, 10 (06)