Opentrons for automated and high-throughput viscometry

被引:0
|
作者
Soh, Beatrice W. [1 ]
Chitre, Aniket [2 ]
Tan, Shu Zheng [3 ]
Wang, Yuhan [1 ]
Yi, Yinqi [1 ]
Soh, Wendy [3 ]
Hippalgaonkar, Kedar [1 ,3 ]
Wilson, D. Ian [2 ]
机构
[1] Agcy ScienceTechnol & Res ASTAR, Inst Mat Res & Engn, Singapore 138634, Singapore
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Philippa Fawcett Dr, Cambridge CB3 0AS, England
[3] Nanyang Technol Univ, Dept Mat Sci & Engn, Singapore 117575, Singapore
来源
DIGITAL DISCOVERY | 2025年 / 4卷 / 03期
关键词
VISCOSITY; FLOW;
D O I
10.1039/d4dd00368c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present an improved high-throughput proxy viscometer based on the Opentrons (OT-2) automated liquid handler. The working principle of the viscometer lies in the differing rates at which air-displacement pipettes dispense liquids of different viscosities. The operating protocol involves measuring the amount of liquid dispensed over a set time for given dispense conditions. Data collected at different set dispense flow rates was used to train an ensemble machine learning regressor to predict Newtonian liquid viscosity in the range of 20-20 000 cP, with similar to 450 cP error (similar to 8% relative to sample mean). A phenomenological model predicting the observed trends is presented and used to extend the applicability of the proxy viscometer to simple non-Newtonian liquids. As proof-of-concept, we demonstrate the ability of the proxy viscometer to characterize the rheological behavior of two types of power-law fluids.
引用
收藏
页码:711 / 722
页数:12
相关论文
共 50 条
  • [1] Automated pipetting robot for proxy high-throughput viscometry of Newtonian fluids
    Soh, Beatrice W.
    Chitre, Aniket
    Lee, Wen Yang
    Bash, Daniil
    Kumar, Jatin N.
    Hippalgaonkar, Kedar
    DIGITAL DISCOVERY, 2023, 2 (02): : 481 - 488
  • [2] Automated high-throughput Wannierisation
    Valerio Vitale
    Giovanni Pizzi
    Antimo Marrazzo
    Jonathan R. Yates
    Nicola Marzari
    Arash A. Mostofi
    npj Computational Materials, 6
  • [3] Automated high-throughput Wannierisation
    Vitale, Valerio
    Pizzi, Giovanni
    Marrazzo, Antimo
    Yates, Jonathan R.
    Marzari, Nicola
    Mostofi, Arash A.
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [4] Automated equipment for high-throughput experimentation
    Brändli, C
    Maiwald, P
    Schröer, J
    CHIMIA, 2003, 57 (05) : 284 - 289
  • [5] Automated ATR for High-Throughput Laboratories
    Briggs, Jenni L.
    Sykora, Lorenz
    SPECTROSCOPY, 2018, 33 (09) : 52 - 52
  • [6] Automated high-throughput generation of droplets
    Guzowski, Jan
    Korczyk, Piotr M.
    Jakiela, Slawomir
    Garstecki, Piotr
    LAB ON A CHIP, 2011, 11 (21) : 3593 - 3595
  • [7] Automated, high-throughput photonic packaging
    Barwicz, Tymon
    Lichoulas, Ted W.
    Taira, Yoichi
    Martin, Yves
    Takenobu, Shotaro
    Janta-Polczynski, Alexander
    Numata, Hidetoshi
    Kimbrell, Eddie L.
    Nah, Jae-Woong
    Peng, Bo
    Childers, Darrell
    Leidy, Robert
    Khater, Marwan
    Kamlapurkar, Swetha
    Cyr, Elaine
    Engelmann, Sebastian
    Fortier, Paul
    Boyer, Nicolas
    OPTICAL FIBER TECHNOLOGY, 2018, 44 : 24 - 35
  • [8] High-throughput automated gDNA extraction
    Roby, K
    Cu, M
    Fawcett, J
    GENETIC ENGINEERING NEWS, 2002, 22 (18): : 34 - +
  • [9] HIGH THROUGHPUT VISCOMETRY OF MUCUS
    Spero, R. C.
    Cribb, J.
    Norris, S.
    Vicci, L.
    Taylor, R. M.
    Schubert, R.
    Superfine, R.
    PEDIATRIC PULMONOLOGY, 2009, : 250 - 250
  • [10] An Automated Infrastructure to Support High-Throughput Bioinformatics
    Cuccuru, Gianmauro
    Leo, Simone
    Lianas, Luca
    Muggiri, Michele
    Pinna, Andrea
    Pireddu, Luca
    Uva, Paolo
    Angius, Andrea
    Fotia, Giorgio
    Zanetti, Gianluigi
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 600 - 607