Pyridine-based PBI Composite Membranes for PEMFCs

被引:55
|
作者
Quartarone, E. [1 ,2 ]
Magistris, A. [1 ,2 ]
Mustarelli, P. [1 ,2 ]
Grandi, S. [1 ,2 ]
Carollo, A. [1 ,2 ]
Zukowska, G. Z. [3 ]
Garbarczyk, J. E. [4 ]
Nowinski, J. L. [4 ]
Gerbaldi, C. [5 ]
Bodoardo, S. [5 ]
机构
[1] Univ Pavia, Dept Phys Chem, I-27100 Pavia, Italy
[2] IENI CNR, I-27100 Pavia, Italy
[3] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland
[4] Warsaw Univ Technol, Fac Phys, PL-00662 Warsaw, Poland
[5] Politecn Torino, Dept Mat Sci & Chem Engn, I-10129 Turin, Italy
关键词
Composite; Electrolyte; PEMFC; PBI; Raman; POLYMER ELECTROLYTE MEMBRANES; POLYBENZIMIDAZOLE-BASED MEMBRANES; TRANSFORM INFRARED-SPECTROSCOPY; FUEL-CELLS; PERFORMANCE; SYSTEMS;
D O I
10.1002/fuce.200800149
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Polybenzimiclazole (PBI) activated with H3PO4 is one of the membranes of choice to replace Nafion (R) in PEMFCs in order to allow their use above 100 degrees C. The limits of PBI in terms of acid leaching and low conductivity below 160 degrees C can be overcome by a proper monomer tailoring, and by the addition of new fillers. Here, we report on new pyridine-based PBI membranes with: G) imidazole-silica (SiO2-Im) and 60 mesostructured silica (SBA-15) fillers. Both the thermal stability and the permanent conductivity are improved by adding 5 wt.-% of filler, but SiO2-Im gives the best results. Permanent conductivity values higher than 10(-3) S cm(-1) are obtained at 120 degrees C and 50% R.H. Vibrational spectroscopies (FT-IR and Raman) are used to investigate the relationships among the polymer, the filler and the activating H3PO4 acid.
引用
收藏
页码:349 / 355
页数:7
相关论文
共 50 条
  • [41] Delivery and Toxicity of Ruthenium Pyridine-based Nanophotoswitches in Retina
    Pribisko, Melanie
    Herget, Uli
    Yue, Lan
    Lin, Ming-yi
    Chow, Robert H.
    Humayun, Mark S.
    Grubbs, Robert H.
    Gray, Harry
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [42] Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox flow batteries
    Jung, Mina
    Lee, Wonmi
    Krishnan, N. Nambi
    Kim, Sangwon
    Gupta, Gaurav
    Komsiyska, Lidiya
    Harms, Corinna
    Kwon, Yongchai
    Henkensmeier, Dirk
    APPLIED SURFACE SCIENCE, 2018, 450 : 301 - 311
  • [43] Nafion®-polybenzimidazole (PBI) composite membranes for DMFC applications
    Ainla, Alar
    Brandell, Daniel
    SOLID STATE IONICS, 2007, 178 (7-10) : 581 - 585
  • [44] Pyridine-based sulfoxide pincer complexes of rhodium and iridium
    Schaub, Thomas
    Radius, Udo
    Diskin-Posner, Yael
    Leitus, Gregory
    Shimon, Linda J. W.
    Milstein, David
    ORGANOMETALLICS, 2008, 27 (08) : 1892 - 1901
  • [45] Development of pyridine-based precursors for direct labeling of biomolecules
    Richard, Mylene
    Roche, Melanie
    Specklin, Simon
    Kuhnast, Bertrand
    JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2019, 62 : S121 - S122
  • [46] Molecular recognition of carbohydrates with acyclic pyridine-based receptors
    Mazik, M
    Radunz, W
    Boese, R
    JOURNAL OF ORGANIC CHEMISTRY, 2004, 69 (22): : 7448 - 7462
  • [47] Design, synthesis, and cytotoxic activity of pyridine-based stilbenes
    Ma, Zongchen
    Han, Xiao
    Jiang, Can
    Liu, Kun
    Li, Guoqiang
    NATURAL PRODUCT RESEARCH, 2024, 38 (11) : 1961 - 1966
  • [48] Synthesis and characterization of novel fluorinated pyridine-based polyimides
    Vaganova, Tamara A.
    Shundrina, Inna K.
    Kusov, Soltan Z.
    Rodionov, Vladimir I.
    Malykhin, Evgenij V.
    JOURNAL OF FLUORINE CHEMISTRY, 2013, 149 : 57 - 64
  • [49] Intramolecular pyridine-based frustrated Lewis-pairs
    Koerte, Leif A.
    Warner, Robin
    Vishnevskiy, Yury V.
    Neumann, Beate
    Stammler, Hans-Georg
    Mitzel, Norbert W.
    DALTON TRANSACTIONS, 2015, 44 (21) : 9992 - 10002
  • [50] Two Pyridine-Based Fluorescent Probes for Sensing pH
    Sun, Jinyu
    Wei, Chunying
    CHEMISTRYSELECT, 2020, 5 (41): : 12704 - 12710