Sulfonated 2D Covalent Organic Frameworks for Efficient Proton Conduction

被引:30
|
作者
Yang, Zongfan [1 ]
Chen, Pei [1 ]
Hao, Wenjing [1 ]
Xie, Zhen [1 ]
Feng, Yu [2 ]
Xing, Guolong [1 ]
Chen, Long [1 ]
机构
[1] Tianjin Univ, Tianjin Key Lab Mol Optoelect Sci, Dept Chem, Inst Mol Plus, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Key Lab Mol Recognit & Funct, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent organic frameworks; post-synthesis; proton conduction; stability; sulfonation; ACID GROUPS; POLYMER; FUNCTIONALIZATION; CRYSTALLINE; PERFORMANCE; MEMBRANES;
D O I
10.1002/chem.202004727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Open 1D channels found in covalent organic frameworks are unique and promising to serve as pathways for proton conduction; how to develop high-rate yet stable transporting systems remains a substantial challenge. Herein, this work reports a strategy for exploring proton-conducting frameworks by engineering pore walls and installing proton-containing polymers into the pores. Amide-linked and sulfonated frameworks were synthesized from imine-linked precursors via sequentially engineering to oxidize into amide linkages and to further anchor sulfonic acid groups onto the pore walls, enabling the creation of sulfonated frameworks with high crystallinity and channel ordering. Integrating sulfonated polyether ether ketone chains into the open channels enables proton hopping to across the channels, greatly increases proton conductivity and enables a stable continuous run. These results suggest a way to explore proton-conducting COFs via systematic engineering of the wall and space of the open nanochannels.
引用
收藏
页码:3817 / 3822
页数:7
相关论文
共 50 条
  • [41] Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity
    Peng, Yongwu
    Xu, Guodong
    Hu, Zhigang
    Cheng, Youdong
    Chi, Chenglong
    Yuan, Daqiang
    Cheng, Hansong
    Zhao, Dan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (28) : 18505 - 18512
  • [42] The role of lattice vibration in the terahertz region for proton conduction in 2D metal-organic frameworks
    Itakura, Tomoya
    Matsui, Hiroshi
    Tada, Tomofumi
    Kitagawa, Susumu
    Demessence, Aude
    Horike, Satoshi
    CHEMICAL SCIENCE, 2020, 11 (06) : 1538 - 1541
  • [43] Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks
    Cote, Adrien P.
    El-Kaderi, Hani M.
    Furukawa, Hiroyasu
    Hunt, Joseph R.
    Yaghi, Omar M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (43) : 12914 - +
  • [44] 2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization
    Wang, Yuancheng
    Zhao, Yingjie
    Li, Zhibo
    MACROMOLECULAR RAPID COMMUNICATIONS, 2022, 43 (16)
  • [45] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Yanqing Ge
    Wei Zhang
    Science China(Chemistry), 2023, 66 (04) : 926 - 927
  • [46] Organized formation of 2D extended covalent organic frameworks at surfaces
    Zwaneveld, Nikolas A. A.
    Pawlak, Remy
    Abel, Mathieu
    Catalin, Daniel
    Gigmes, Didier
    Bertin, Denis
    Porte, Louis
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (21) : 6678 - +
  • [47] Developing 2D covalent organic frameworks for carbon dioxide adsorption
    Huang, Ning
    Jiang, Donglin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [48] Flatbands in 2D boroxine-linked covalent organic frameworks
    Wang, Rui-Ning
    Zhang, Xin-Ran
    Wang, Shu-Fang
    Fu, Guang-Sheng
    Wang, Jiang-Long
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (02) : 1258 - 1264
  • [49] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Ge, Yanqing
    Zhang, Wei
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (04) : 926 - 927
  • [50] Directed synthesis of isomeric 2D heteropore covalent organic frameworks
    Yanqing Ge
    Wei Zhang
    Science China(Chemistry), 2023, (04) : 926 - 927