The classification of the smallest nontrivial blocking sets in PG(n,2)

被引:7
|
作者
Govaerts, Patrick [1 ]
Storme, Leo [1 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
blocking sets; galois spaces;
D O I
10.1016/j.jcta.2005.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the smallest nontrivial blocking sets with respect to t-spaces in PG(n, 2), n >= 3. For t = n - 1, they are skeletons of solids in PG(n, 2); for 1 <= t < n - 1, they are cones with vertex an (n - t - 3)space pi(n-t-3) and base the set of points on the edges of a tetrahedron in a solid skew to pi(n-t-3) (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1543 / 1548
页数:6
相关论文
共 50 条
  • [1] The characterisation of the smallest two fold blocking sets in PG(n, 2)
    Aggarwal, Manohar L.
    Klein, Andreas
    Storme, Leo
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 63 (02) : 149 - 157
  • [2] The characterisation of the smallest two fold blocking sets in PG(n, 2)
    Manohar L. Aggarwal
    Andreas Klein
    Leo Storme
    Designs, Codes and Cryptography, 2012, 63 : 149 - 157
  • [3] Classification of minimal blocking sets in PG(2,9)
    Arne Botteldoorn
    Kris Coolsaet
    Veerle Fack
    Journal of Geometry, 2024, 115
  • [4] Classification of minimal blocking sets in PG(2,9)
    Botteldoorn, Arne
    Coolsaet, Kris
    Fack, Veerle
    JOURNAL OF GEOMETRY, 2024, 115 (01)
  • [5] The two smallest minimal blocking sets of Q(2n, 3), n≥3
    De Beule, J.
    Storme, L.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 12 (05) : 735 - 742
  • [6] On the smallest minimal blocking sets of Q(2n, q), for q an odd prime
    De Beule, J
    Storme, L
    DISCRETE MATHEMATICS, 2005, 294 (1-2) : 83 - 107
  • [7] Blocking sets in PG(2, qn) from cones of PG(2n, q)
    Francesco Mazzocca
    Olga Polverino
    Journal of Algebraic Combinatorics, 2006, 24 : 61 - 81
  • [8] Minimal blocking sets in PG(n, 2) and covering groups by subgroups
    Abdollahi, A.
    Ataei, M. J.
    Hassanabadi, A. Mohammadi
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) : 365 - 380
  • [9] Blocking sets in PG(2, qn) from cones of PG(2n, q)
    Mazzocca, Francesco
    Polverino, Olga
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (01) : 61 - 81
  • [10] Multiple blocking sets in PG(n, q), n≥3
    Barát, J
    Storme, L
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 33 (01) : 5 - 21