The two smallest minimal blocking sets of Q(2n, 3), n≥3

被引:0
|
作者
De Beule, J. [1 ]
Storme, L. [1 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
关键词
D O I
10.36045/bbms/1136902611
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the two smallest minimal blocking sets of Q(2n, 3), n >= 3. To obtain these results, we use the characterization of the smallest minimal blocking sets of Q(6,3), different from an ovoid. We also present some geometrical properties of ovoids of Q(6, q), q odd.
引用
收藏
页码:735 / 742
页数:8
相关论文
共 50 条
  • [1] On the smallest minimal blocking sets of Q(2n, q), for q an odd prime
    De Beule, J
    Storme, L
    DISCRETE MATHEMATICS, 2005, 294 (1-2) : 83 - 107
  • [2] Characterization results on small blocking sets of the polar spaces Q+(2n + 1, 2) and Q+(2n + 1, 3)
    J. De Beule
    K. Metsch
    L. Storme
    Designs, Codes and Cryptography, 2007, 44 : 197 - 207
  • [3] Multiple blocking sets in PG(n, q), n≥3
    Barát, J
    Storme, L
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 33 (01) : 5 - 21
  • [4] Multiple Blocking Sets in PG(n, q), n > 3
    János Barát
    Leo Storme
    Designs, Codes and Cryptography, 2004, 33 : 5 - 21
  • [5] The characterisation of the smallest two fold blocking sets in PG(n, 2)
    Aggarwal, Manohar L.
    Klein, Andreas
    Storme, Leo
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 63 (02) : 149 - 157
  • [6] The characterisation of the smallest two fold blocking sets in PG(n, 2)
    Manohar L. Aggarwal
    Andreas Klein
    Leo Storme
    Designs, Codes and Cryptography, 2012, 63 : 149 - 157
  • [7] The smallest minimal blocking sets of Q(6, q), q even
    De Beule, J
    Storme, L
    JOURNAL OF COMBINATORIAL DESIGNS, 2003, 11 (04) : 290 - 303
  • [8] On 1-Blocking Sets in PG(n,q), n ≥ 3
    L. Storme
    Zs. Weiner
    Designs, Codes and Cryptography, 2000, 21 : 235 - 251
  • [9] On 1-blocking sets in PG(n, q), n ≥ 3
    Storme, L
    Weiner, Z
    DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) : 235 - 251
  • [10] Blocking All Generators of Q+(2n + 1,3), n ≥ 4
    Jan De Beule
    Leo Storme
    Designs, Codes and Cryptography, 2006, 39 : 323 - 333