Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

被引:27
|
作者
Jeng, Ming-Jer [1 ]
Chen, Zih-Yang [1 ]
Xiao, Yu-Ling [1 ]
Chang, Liann-Be [1 ]
Ao, Jianping [2 ,3 ]
Sun, Yun [2 ,3 ]
Popko, Ewa [4 ]
Jacak, Witold [4 ]
Chow, Lee [5 ]
机构
[1] Chang Gung Univ, Dept Elect Engn, Kweishan Taoyuan 333, Taiwan
[2] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Tianjin 300071, Peoples R China
[3] Nankai Univ, Tianjin Key Lab Thin film Devices & Technol, Tianjin 300071, Peoples R China
[4] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland
[5] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
来源
MATERIALS | 2015年 / 8卷 / 10期
关键词
Au and Ag nanoparticles; multicrystalline silicon; CIGS solar cells; spin coating; ABSORPTION; SIZE;
D O I
10.3390/ma8105337
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.
引用
收藏
页码:6761 / 6771
页数:11
相关论文
共 50 条
  • [21] Highest efficiency rapid thermal processed multicrystalline silicon solar cells
    Noël, S
    Lautenschlager, H
    Muller, JC
    PROGRESS IN PHOTOVOLTAICS, 2001, 9 (01): : 41 - 47
  • [22] Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers
    Xie, Feng-Xian
    Choy, Wallace C. H.
    Wang, Charlie C. D.
    Sha, Wei E. I.
    Fung, Dixon D. S.
    APPLIED PHYSICS LETTERS, 2011, 99 (15)
  • [23] Observation of metal precipitates at prebreakdown sites in multicrystalline silicon solar cells
    Kwapil, Wolfram
    Gundel, Paul
    Schubert, Martin C.
    Heinz, Friedemann D.
    Warta, Wilhelm
    Weber, Eicke R.
    Goetzberger, Adolf
    Martinez-Criado, Gema
    APPLIED PHYSICS LETTERS, 2009, 95 (23)
  • [24] MULTICRYSTALLINE SILICON FOR SOLAR-CELLS
    HELMREICH, D
    JOURNAL DE PHYSIQUE, 1982, 43 (NC1): : 289 - 305
  • [25] Twinning in multicrystalline silicon for solar cells
    Stokkan, G.
    JOURNAL OF CRYSTAL GROWTH, 2013, 384 : 107 - 113
  • [26] Nanometer-scale metal precipitates in multicrystalline silicon solar cells
    McHugo, SA
    Thompson, AC
    Mohammed, A
    Lamble, G
    Périchaud, I
    Martinuzzi, S
    Werner, M
    Rinio, M
    Koch, W
    Hoefs, HU
    Haessler, C
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (08) : 4282 - 4288
  • [28] High efficiency gallium doped and boron doped multicrystalline silicon solar cells
    Fujii, S
    Fukui, K
    Sihirasawa, K
    Dhamrin, M
    Saitoh, T
    PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 1493 - 1495
  • [29] Increased Efficiency for CIGS Solar Cells
    不详
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2011, 48 (05): : 278 - 279
  • [30] Low-cost multicrystalline silicon for high-efficiency solar cells
    Khattak, CP
    Schmid, F
    13TH NREL PHOTOVOLTAICS PROGRAM REVIEW, 1996, (353): : 118 - 125