Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods

被引:54
|
作者
El Adlouni, Salaheddine [1 ]
Favre, Anne-Catherine [1 ]
Bobee, Bernard [1 ]
机构
[1] Univ Quebec, Ctr Eau Terre & Environm, Inst Natl Rech Sci, Chaire Hydrol Stat, Quebec City, PQ G1K 9A9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
convergence; MCMC; Gibbs sampler; Gelman and Rubin; Yu and Mykland; Raftery and Lewis; Geweke; Riemann sums; subsampling; burn-in period;
D O I
10.1016/j.csda.2005.04.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One major challenge with the modelization of complex problems using Markov chain Monte Carlo (MCMC) methods is the determination of the length of the chain in order to reach convergence. This paper is devoted to parametric empirical methods testing the stationarity. We compare the methods of Gelman and Rubin, Yu and Mykland, Raftery and Lewis, Geweke, Riemann sums and the subsampling. These methods are tested using three examples: the simple case of the generation of a normal random variable, a bivariate mixture of normal models and a practical case taken from hydrology, namely the shifting level model. Results show that no method works in every case. We therefore suggest a joint use of these techniques. The importance of determining carefully the burn-in period is also highlighted. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2685 / 2701
页数:17
相关论文
共 50 条
  • [21] A Markov chain Monte Carlo convergence diagnostic using subsampling
    Giakoumatos, SG
    Vrontos, ID
    Dellaportas, P
    Politis, DN
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (03) : 431 - 451
  • [22] Markov chain Monte Carlo methods2. The Markov chain case
    K. B. Athreya
    Mohan Delampady
    T. Krishnan
    Resonance, 2003, 8 (7) : 63 - 75
  • [23] CONVERGENCE OF ADAPTIVE AND INTERACTING MARKOV CHAIN MONTE CARLO ALGORITHMS
    Fort, G.
    Moulines, E.
    Priouret, P.
    ANNALS OF STATISTICS, 2011, 39 (06): : 3262 - 3289
  • [24] Convergence of concurrent Markov chain Monte-Carlo algorithms
    K.U. Leuven, Heverlee, Belgium
    Concurrency Pract Exper, 3 (167-189):
  • [25] Discretization of continuous Markov chains and Markov chain Monte Carlo convergence assessment
    Guihenneuc-Jouyaux, C
    Robert, CP
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 1055 - 1067
  • [26] Markov chain Monte Carlo methods for speech enhancement
    Vermaak, J
    Niranjan, M
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1013 - 1016
  • [27] LOCAL DEGENERACY OF MARKOV CHAIN MONTE CARLO METHODS
    Kamatani, Kengo
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 713 - 725
  • [28] SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
    Brockwell, Anthony
    Del Moral, Pierre
    Doucet, Arnaud
    ANNALS OF STATISTICS, 2010, 38 (06): : 3387 - 3411
  • [29] Local consistency of Markov chain Monte Carlo methods
    Kamatani, Kengo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (01) : 63 - 74
  • [30] Fluctuations of interacting Markov chain Monte Carlo methods
    Bercu, Bernard
    Del Moral, Pierre
    Doucet, Arnaud
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1304 - 1331