Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter

被引:77
|
作者
Mawonou, Kodjo S. R. [1 ,2 ]
Eddahech, Akram [2 ]
Dumur, Didier [1 ]
Beauvois, Dominique [1 ]
Godoy, Emmanuel [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, CNRS, L2S,UMR 8506,Cent Suplec, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[2] Techrtoctr Renault, 1 Ave Golf, F-78280 Guyancourt, France
关键词
Li-ion battery; Fractional order model; Electrochemical impedance spectroscopy; EKF; SoC estimation; Recursive identification; PARAMETER-IDENTIFICATION; MANAGEMENT-SYSTEMS; HEALTH ESTIMATION; ONLINE STATE; MODEL; ELECTROLYTES; PERFORMANCE; IMPEDANCE; PACKS;
D O I
10.1016/j.jpowsour.2019.226710
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An accurate state of charge (SoC) estimation by the battery management system (BMS) is crucial for efficient and non-destructive battery operation in automotive applications. The model identification of these batteries has consistently been the critical point to meet good accuracy. To that extent, a fractional order model (FOM) is derived, which provides a more meaningful insight into the battery physical phenomena without increasing the number of parameters as opposed to electrochemical models. This paper proposes FOM identification for Li-ion batteries in both frequency domain based on recorded impedance spectroscopy (EIS) data and time domain using a recursive least squares (RLS) algorithm. Fractional derivatives are overly sensitive to the value of their fractional order. A straightforward and efficient way to identify the fractional orders based on recorded EIS data is proposed in this paper. Furthermore, an extended Kalman filter (EKF) is also designed based on the derived model to estimate the SoC. The designed fractionasl order filter provides a higher accuracy level in comparison to the classical equivalent electric circuit (EEC). Various results at several temperatures and driving profiles for both PHEV and EV batteries confirm that the FOM provides better accuracy and robustness compared to the classical integer order model.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] An enhanced temperature-dependent model and state-of-charge estimation for a Li-Ion battery using extended Kalman filter
    Pang, Hui
    Guo, Long
    Wu, Longxing
    Jin, Xinfang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7254 - 7267
  • [32] Robust State of Charge estimation for Li-ion batteries based on Extended State Observers
    Sandoval-Chileno, Marco A.
    Castaneda, Luis A.
    Luviano-Juarez, Alberto
    Gutierrez-Frias, Octavio
    Vazquez-Arenas, Jorge
    JOURNAL OF ENERGY STORAGE, 2020, 31
  • [33] Estimation of state-of-charge of Li-ion batteries in EV using the genetic particle filter
    Bi, Jun
    Gao, Hang
    Wang, Yongxing
    Zhao, Xiaomei
    2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, ENERGY TECHNOLOGY AND ENVIRONMENTAL ENGINEERING (MSETEE 2017), 2017, 81
  • [34] A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter
    Sepasi, Saeed
    Ghorbani, Reza
    Liaw, Bor Yann
    JOURNAL OF POWER SOURCES, 2014, 245 : 337 - 344
  • [35] A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
    Shichun Yang
    Sida Zhou
    Yang Hua
    Xinan Zhou
    Xinhua Liu
    Yuwei Pan
    Heping Ling
    Billy Wu
    Scientific Reports, 11
  • [36] A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
    Yang, Shichun
    Zhou, Sida
    Hua, Yang
    Zhou, Xinan
    Liu, Xinhua
    Pan, Yuwei
    Ling, Heping
    Wu, Billy
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [37] Research on Estimation of State of Charge of Li-ion Battery based on Cubature Kalman Filter
    Zhuang, Shiqiang
    Gao, Yuan
    Chen, Andi
    Ma, Tingyu
    Cai, Yang
    Liu, Min
    Ke, Yiming
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (10)
  • [38] Co-estimation for capacity and state of charge for lithium-ion batteries using improved adaptive extended Kalman filter
    Nian, Peng
    Shuzhi, Zhang
    Xiongwen, Zhang
    JOURNAL OF ENERGY STORAGE, 2021, 40
  • [39] State of Charge Estimation Algorithm Based on Fractional-Order Adaptive Extended Kalman Filter and Unscented Kalman Filter
    Liu, Weijie
    Zhou, Hongliang
    Tang, Zeqiang
    Wang, Tianxiang
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (02)
  • [40] Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion
    Ma, Wentao
    Guo, Peng
    Wang, Xiaofei
    Zhang, Zhiyu
    Peng, Siyuan
    Chen, Badong
    ENERGY, 2022, 260