Min-max Differential Inequalities for Polytopic Tube MPC

被引:2
|
作者
Feng, Xuhui [1 ]
Hu, Haimin [1 ,2 ]
Villanueva, Mario E. [1 ]
Houska, Boris [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol SIST, Shanghai, Peoples R China
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
MODEL-PREDICTIVE CONTROL; SYSTEMS;
D O I
10.23919/acc.2019.8814862
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with robust, tube-based MPC for control systems with bounded time-varying disturbances. In tube MPC, predicted trajectories are replaced by a robust forward invariant tube (RFIT), a set-valued function enclosing all possible state trajectories under a given feedback control law, regardless of the uncertainty realization. In this paper, the main idea is to characterize RFITs with polytopic crosssections via a min-max differential inequality for their support functions. This result leads to a conservative but tractable polytopic tube MPC formulation, which can be solved using existing optimal control solvers. The corresponding theoretical developments are illustrated by a numerical case study.
引用
收藏
页码:1170 / 1174
页数:5
相关论文
共 50 条
  • [21] Min-max certainty equivalence principle and differential games
    Bernhard, P
    Rapaport, A
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1996, 6 (08) : 825 - 842
  • [22] ON A MIN-MAX THEOREM
    CHEN FANGQI
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 1997, (03) : 43 - 48
  • [23] Min-Max Propagation
    Srinivasa, Christopher
    Givoni, Inmar
    Ravanbakhsh, Siamak
    Frey, Brendan J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [24] Min-max predictive control strategies for input-saturated polytopic uncertain systems
    Casavola, A
    Giannelli, M
    Mosca, E
    AUTOMATICA, 2000, 36 (01) : 125 - 133
  • [25] MIN-MAX INDICATOR
    VASILEV, SI
    SIDELNIKOV, ZI
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (06) : 1325 - 1327
  • [26] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [27] On Min-Max Optimization for Systems with Addition-Min-Product Fuzzy Relational Inequalities
    Wu, Yan-Kuen
    Guu, Sy-Ming
    Yang, Fu-Hung
    Chang, Kuang-Ming
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2022, 24 (06) : 2631 - 2642
  • [28] Min-Max Programming Problem Subject to Addition-Min Fuzzy Relation Inequalities
    Yang, Xiao-Peng
    Zhou, Xue-Gang
    Cao, Bing-Yuan
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (01) : 111 - 119
  • [29] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [30] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    Operations Research and Its Applications, 2005, 5 : 171 - 178