Min-max Differential Inequalities for Polytopic Tube MPC

被引:2
|
作者
Feng, Xuhui [1 ]
Hu, Haimin [1 ,2 ]
Villanueva, Mario E. [1 ]
Houska, Boris [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol SIST, Shanghai, Peoples R China
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
MODEL-PREDICTIVE CONTROL; SYSTEMS;
D O I
10.23919/acc.2019.8814862
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with robust, tube-based MPC for control systems with bounded time-varying disturbances. In tube MPC, predicted trajectories are replaced by a robust forward invariant tube (RFIT), a set-valued function enclosing all possible state trajectories under a given feedback control law, regardless of the uncertainty realization. In this paper, the main idea is to characterize RFITs with polytopic crosssections via a min-max differential inequality for their support functions. This result leads to a conservative but tractable polytopic tube MPC formulation, which can be solved using existing optimal control solvers. The corresponding theoretical developments are illustrated by a numerical case study.
引用
收藏
页码:1170 / 1174
页数:5
相关论文
共 50 条
  • [1] Robust MPC via min-max differential inequalities
    Villanueva, Mario E.
    Quirynen, Rien
    Diehl, Moritz
    Chachuat, Benoit
    Houska, Boris
    AUTOMATICA, 2017, 77 : 311 - 321
  • [2] Handling the Constraints in Min-Max MPC
    Hu, Jianchen
    Lv, Xiaoliang
    Pan, Hongguang
    Zhang, Meng
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (01) : 296 - 304
  • [3] Computational burden reduction in min-max MPC
    Ramirez, D. R.
    Alamo, T.
    Camacho, E. F.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09): : 2430 - 2447
  • [4] Min-Max MPC based on a network problem
    Alamo, T.
    de la Pena, D. Munoz
    Camacho, E. R.
    SYSTEMS & CONTROL LETTERS, 2008, 57 (02) : 184 - 192
  • [5] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    de la Pena, D. Munoz
    Camacho, E. F.
    AUTOMATICA, 2007, 43 (04) : 693 - 700
  • [6] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    Munoz de la Pena, D.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 6210 - 6215
  • [7] Application of an explicit min-max MPC to a scaled laboratory process
    de la Peña, DM
    Ramírez, DR
    Camacho, EF
    Alamo, T
    CONTROL ENGINEERING PRACTICE, 2005, 13 (12) : 1463 - 1471
  • [8] An efficient offline implementation for output feedback min-max MPC
    Hu, Jianchen
    Ding, Baocang
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (02) : 492 - 506
  • [9] Characterization of Min-Max MPC with bounded uncertainties and a quadratic criterion
    Ramírez, DR
    Camacho, EF
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 358 - 363
  • [10] Min-max differential game with partial differential equation
    Youness, Ebrahim A.
    Megahed, Abd El-Monem A.
    Eladdad, Elsayed E.
    Madkour, Hanem F. A.
    AIMS MATHEMATICS, 2022, 7 (08): : 13777 - 13789