k-potent preserving linear maps

被引:4
|
作者
Hou, SZ [1 ]
Hou, JC [1 ]
机构
[1] Shanxi Teachers Univ, Dept Math, Linfen 041004, Peoples R China
关键词
Banach space operator; k-potent operator; automorphism;
D O I
10.1016/S0252-9602(17)30326-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B(X) be the Banach algebra of all bounded linear operators on a complex Banach space X. Let k greater than or equal to 2 be an integer and phi a weakly continuous linear surjective map from B(X) into itself. It is shown that phi is k-potent preserving if and only if it is k-th-power preserving, and in turn, if and only if it is either an automorphism or an antiautomorphism on B(X) multiplied by a complex number lambda satisfying lambda(k-1) = 1. Let A be a von Neumann algebra and B be a Banach algebra, it is also shown that a bounded surjective linear map from A onto B is k-potent preserving if and only if it is a Jordan homomorphism multiplied by an invertible element with (k - 1)-th power I.
引用
收藏
页码:517 / 525
页数:9
相关论文
共 50 条
  • [11] A structural characterization of real k-potent matrices
    Huang, Rong
    Liu, Jianzhou
    Zhu, Li
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (04): : 433 - 439
  • [12] Irreducible sign k-potent sign pattern matrices
    Stuart, J
    Eschenbach, C
    Kirkland, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 294 (1-3) : 85 - 92
  • [13] On the eigenstructures of functional K-potent matrices and their integral forms
    Wu, Yan
    Linder, Daniel F.
    WSEAS Transactions on Mathematics, 2010, 9 (04) : 244 - 253
  • [14] SUBVARIETIES OF CERTAIN K-POTENT SEMIGROUPS . PRELIMINARY REPORT
    GERHARD, JA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 282 - &
  • [15] Irreducible, pattern k-potent ray pattern matrices
    Stuart, JL
    Beasley, L
    Shader, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 346 : 261 - 271
  • [16] Reducible sign k-potent sign pattern matrices
    Stuart, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 294 (1-3) : 197 - 211
  • [17] Canonical formulas for k-potent commutative, integral, residuated lattices
    Nick Bezhanishvili
    Nick Galatos
    Luca Spada
    Algebra universalis, 2017, 77 : 321 - 343
  • [18] Canonical formulas for k-potent commutative, integral, residuated lattices
    Bezhanishvili, Nick
    Galatos, Nick
    Spada, Luca
    ALGEBRA UNIVERSALIS, 2017, 77 (03) : 321 - 343
  • [19] Linear maps preserving (p,k) -norms of tensor products of matrices
    Huang, Zejun
    Sze, Nung-Sing
    Zheng, Run
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (01): : 187 - 207
  • [20] K-Potent Matrices-Construction and Applications in Digital Image Encryption
    Wu, Yan
    PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS: RECENT ADVANCES IN APPLIED MATHEMATICS, 2009, : 455 - +