k-potent preserving linear maps

被引:4
|
作者
Hou, SZ [1 ]
Hou, JC [1 ]
机构
[1] Shanxi Teachers Univ, Dept Math, Linfen 041004, Peoples R China
关键词
Banach space operator; k-potent operator; automorphism;
D O I
10.1016/S0252-9602(17)30326-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B(X) be the Banach algebra of all bounded linear operators on a complex Banach space X. Let k greater than or equal to 2 be an integer and phi a weakly continuous linear surjective map from B(X) into itself. It is shown that phi is k-potent preserving if and only if it is k-th-power preserving, and in turn, if and only if it is either an automorphism or an antiautomorphism on B(X) multiplied by a complex number lambda satisfying lambda(k-1) = 1. Let A be a von Neumann algebra and B be a Banach algebra, it is also shown that a bounded surjective linear map from A onto B is k-potent preserving if and only if it is a Jordan homomorphism multiplied by an invertible element with (k - 1)-th power I.
引用
收藏
页码:517 / 525
页数:9
相关论文
共 50 条
  • [1] K-POTENT PRESERVING LINEAR MAPS
    侯绳照
    侯晋川
    ActaMathematicaScientia, 2002, (04) : 517 - 525
  • [2] ON K-POTENT MATRICES
    Baksalary, Oskar Maria
    Trenkler, Goetz
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 446 - 470
  • [3] The Nullity, Rank, and Invertibility of Linear Combinations of k-Potent Matrices
    Tosic, Marina
    Ljajko, Eugen
    Kontrec, Natasa
    Stojanovic, Vladica
    MATHEMATICS, 2020, 8 (12) : 1 - 13
  • [4] Linear k-power/k-potent preservers between matrix spaces
    Zhang, X
    Cao, CG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 412 (2-3) : 373 - 379
  • [5] INVERTIBILITY AND FREDHOLMNESS OF LINEAR COMBINATIONS OF QUADRATIC, k-POTENT AND NILPOTENT OPERATORS
    Gau, Hwa-Long
    Wang, Chih-Jen
    Wong, Ngai-Ching
    OPERATORS AND MATRICES, 2008, 2 (02): : 193 - 199
  • [6] Nonsingularity and group invertibility of linear combinations of two k-potent matrices
    Benitez, Julio
    Liu, Xiaoji
    Zhu, Tongping
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (08): : 1023 - 1035
  • [7] Sign k-potent sign patterns and ray k-potent ray patterns that allow k-potence
    Huang, Rong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2149 - 2156
  • [8] Sign k-potent sign patterns and ray k-potent ray patterns that admit k-potence
    Stuart, Jeffrey L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 527 : 163 - 183
  • [9] Characterizations of k-potent elements in rings
    Mosic, Dijana
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (04) : 1157 - 1168
  • [10] On invertibility of combinations of k-potent operators
    Deng, Chunyuan
    Cvetkovic-Ilic, Dragana S.
    Wei, Yimin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) : 376 - 387